Decision theory with a Hilbert space as possibility space

In this paper, we propose an interpretation of the Hilbert space method used in quantum theory in the context of decision making under uncertainty. For a clear comparison we will stay as close as possible to the framework of SEU suggested by Savage (1954). We will use the Ellsberg (1961) paradox to...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Eichberger, Jürgen (VerfasserIn) , Pirner, Hans J. (VerfasserIn)
Dokumenttyp: Book/Monograph Arbeitspapier
Sprache:Englisch
Veröffentlicht: Heidelberg University of Heidelberg, Department of Economics July 19, 2017
Schriftenreihe:Discussion paper series / University of Heidelberg, Department of Economics no. 637
In: Discussion paper series (no. 637)

Schlagworte:
Online-Zugang:Resolving-System, kostenfrei, Volltext: http://nbn-resolving.de/urn:nbn:de:bsz:16-heidok-233885
Resolving-System, kostenfrei, Volltext: http://hdl.handle.net/10419/179267
Verlag, kostenfrei, Volltext: http://www.ub.uni-heidelberg.de/archiv/23388
Verlag, kostenfrei, Volltext: http://archiv.ub.uni-heidelberg.de/volltextserver/23388/1/dp637.pdf
Volltext
Verfasserangaben:Jürgen Eichberger and Hans Jürgen Pirner
Beschreibung
Zusammenfassung:In this paper, we propose an interpretation of the Hilbert space method used in quantum theory in the context of decision making under uncertainty. For a clear comparison we will stay as close as possible to the framework of SEU suggested by Savage (1954). We will use the Ellsberg (1961) paradox to illustrate the potential of our approach to deal with well-known paradoxa of decision theory.
Beschreibung:Online Resource