Practical Bayesian inference: a primer for physical scientists

Science is fundamentally about learning from data, and doing so in the presence of uncertainty. This volume is an introduction to the major concepts of probability and statistics, and the computational tools for analysing and interpreting data. It describes the Bayesian approach, and explains how th...

Full description

Saved in:
Bibliographic Details
Main Author: Bailer-Jones, Coryn A. L. (Author)
Format: Book/Monograph
Language:English
Published: Cambridge New York Melbourne Delhi Singapore Cambridge University Press 2017
DOI:10.1017/9781108123891
Subjects:
Online Access:Resolving-System, Volltext: http://dx.doi.org/10.1017/9781108123891
Resolving-System, Volltext: https://doi.org/10.1017/9781108123891
Get full text
Author Notes:Coryn A. L. Bailer-Jones, Max-Planck-Institute for Astronomy, Heidelberg

MARC

LEADER 00000cam a2200000 c 4500
001 1005311390
003 DE-627
005 20251024204931.0
007 cr uuu---uuuuu
008 170918s2017 xxk|||||o 00| ||eng c
020 |a 9781108123891  |c  : ebook  |9 978-1-108-12389-1 
024 7 |a 10.1017/9781108123891  |2 doi 
035 |a (DE-627)1005311390 
035 |a (DE-576)493587799 
035 |a (DE-599)GBV1005311390 
035 |a (OCoLC)1005866381 
035 |a (OCoLC)1005866381 
035 |a (CUP)CR9781108123891 
035 |a (DE-627-1)05162379X 
040 |a DE-627  |b ger  |c DE-627  |e rda 
041 |a eng 
044 |c XA-GB 
050 0 |a QC20.7.B38 
082 0 |a 519.5/42 
084 |a 29  |2 sdnb 
084 |a 27  |2 sdnb 
084 |a SK 830  |2 rvk  |0 (DE-625)rvk/143259: 
084 |a 31.70  |2 bkl 
084 |a 31.73  |2 bkl 
100 1 |a Bailer-Jones, Coryn A. L.  |e VerfasserIn  |0 (DE-588)1126122696  |0 (DE-627)880784873  |0 (DE-576)416854834  |4 aut 
245 1 0 |a Practical Bayesian inference  |b a primer for physical scientists  |c Coryn A. L. Bailer-Jones, Max-Planck-Institute for Astronomy, Heidelberg 
264 1 |a Cambridge  |a New York  |a Melbourne  |a Delhi  |a Singapore  |b Cambridge University Press  |c 2017 
300 |a 1 Online-Ressource (ix, 295 Seiten)  |b Diagramme 
336 |a Text  |b txt  |2 rdacontent 
337 |a Computermedien  |b c  |2 rdamedia 
338 |a Online-Ressource  |b cr  |2 rdacarrier 
500 |a Title from publisher's bibliographic system (viewed on 17 Jul 2017) 
520 |a Science is fundamentally about learning from data, and doing so in the presence of uncertainty. This volume is an introduction to the major concepts of probability and statistics, and the computational tools for analysing and interpreting data. It describes the Bayesian approach, and explains how this can be used to fit and compare models in a range of problems. Topics covered include regression, parameter estimation, model assessment, and Monte Carlo methods, as well as widely used classical methods such as regularization and hypothesis testing. The emphasis throughout is on the principles, the unifying probabilistic approach, and showing how the methods can be implemented in practice. R code (with explanations) is included and is available online, so readers can reproduce the plots and results for themselves. Aimed primarily at undergraduate and graduate students, these techniques can be applied to a wide range of data analysis problems beyond the scope of this work 
520 |a Probability basics -- Estimation and uncertainty -- Statistical models and inference -- Linear models, least squares, and maximum likelihood -- Parameter estimation: single parameter -- Parameter estimation: multiple parameters -- Approximating distributions -- Monte Carlo methods for inference -- Parameter estimation: Markov Chain Monte Carlo -- Frequentist hypothesis testing -- Model comparison -- Dealing with more complicated problems 
650 0 |a Mathematical physics 
650 0 |a Bayesian statistical decision theory 
689 0 0 |d s  |0 (DE-588)4123037-1  |0 (DE-627)105758051  |0 (DE-576)209556331  |a Datenanalyse  |2 gnd 
689 0 1 |d s  |0 (DE-588)4648118-7  |0 (DE-627)333132068  |0 (DE-576)214635988  |a Bayes-Inferenz  |2 gnd 
689 0 |5 (DE-627) 
776 1 |z 9781316642214  |c (pbk.) 
776 1 |z 9781107192119  |c  : hardback 
776 1 |z 9781316642214  |c  : paperback 
776 0 8 |i Erscheint auch als  |n Druck-Ausgabe  |a Bailer-Jones, Coryn A. L.  |t Practical Bayesian inference  |d Cambridge : Cambridge University Press, 2017  |h ix, 295 Seiten  |w (DE-627)881096814  |w (DE-576)483739839  |z 1107192110  |z 1316642216  |z 9781107192119  |z 9781316642214 
776 0 8 |i Erscheint auch als  |n Druck-Ausgabe  |z 9781107192119 
856 4 0 |u http://dx.doi.org/10.1017/9781108123891  |x Resolving-System  |3 Volltext 
856 4 0 |u https://doi.org/10.1017/9781108123891  |m X:CUP  |x Resolving-System  |3 Volltext 
912 |a ZDB-20-CTM 
912 |a ZDB-20-CBO 
935 |i Blocktest 
936 r v |a SK 830  |b Statistische Entscheidungstheorie  |k Mathematik  |k Monografien  |k Wahrscheinlichkeitstheorie  |k Statistische Entscheidungstheorie  |0 (DE-627)1270877526  |0 (DE-625)rvk/143259:  |0 (DE-576)200877526 
936 b k |a 31.70  |j Wahrscheinlichkeitsrechnung  |q SEPA  |0 (DE-627)106408070 
936 b k |a 31.73  |j Mathematische Statistik  |q SEPA  |0 (DE-627)106418998 
951 |a BO 
990 |a Bayes-Inferenz 
990 |a Datenanalyse 
992 |a 20250324 
993 |a Book 
994 |a 2017 
998 |g 1126122696  |a Bailer-Jones, Coryn A. L.  |m 1126122696:Bailer-Jones, Coryn A. L.  |d 130000  |e 130000PB1126122696  |k 0/130000/  |p 1  |x j  |y j 
999 |a KXP-PPN1005311390  |e 4691237216 
BIB |a Y 
JSO |a {"title":[{"title_sort":"Practical Bayesian inference","title":"Practical Bayesian inference","subtitle":"a primer for physical scientists"}],"origin":[{"dateIssuedDisp":"2017","dateIssuedKey":"2017","publisher":"Cambridge University Press","publisherPlace":"Cambridge ; New York ; Melbourne ; Delhi ; Singapore"}],"id":{"doi":["10.1017/9781108123891"],"eki":["1005311390"],"isbn":["9781108123891"]},"name":{"displayForm":["Coryn A. L. Bailer-Jones, Max-Planck-Institute for Astronomy, Heidelberg"]},"person":[{"family":"Bailer-Jones","given":"Coryn A. L.","roleDisplay":"VerfasserIn","display":"Bailer-Jones, Coryn A. L.","role":"aut"}],"note":["Title from publisher's bibliographic system (viewed on 17 Jul 2017)"],"type":{"media":"Online-Ressource","bibl":"book"},"physDesc":[{"extent":"1 Online-Ressource (ix, 295 Seiten)","noteIll":"Diagramme"}],"recId":"1005311390","language":["eng"]} 
SRT |a BAILERJONEPRACTICALB2017