Efficient numerical realization of discontinuous Galerkin methods for temporal discretization of parabolic problems

We present an efficient and easy to implement approach to solving the semidiscrete equation systems resulting from time discretization of nonlinear parabolic problems with discontinuous Galerkin methods of order r. It is based on applying Newton’s method and decoupling the Newton update equation, wh...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Richter, Thomas (VerfasserIn) , Springer, Andreas (VerfasserIn) , Vexler, Boris (VerfasserIn)
Dokumenttyp: Article (Journal)
Sprache:Englisch
Veröffentlicht: 2013
In: Numerische Mathematik
Year: 2013, Jahrgang: 124, Heft: 1, Pages: 151-182
ISSN:0945-3245
DOI:10.1007/s00211-012-0511-7
Online-Zugang:Verlag, lizenzpflichtig, Volltext: https://doi.org/10.1007/s00211-012-0511-7
Verlag, lizenzpflichtig, Volltext: https://link.springer.com/article/10.1007%2Fs00211-012-0511-7
Volltext
Verfasserangaben:Thomas Richter · Andreas Springer · Boris Vexle

MARC

LEADER 00000caa a2200000 c 4500
001 100875417X
003 DE-627
005 20241205154545.0
007 cr uuu---uuuuu
008 171213s2013 xx |||||o 00| ||eng c
024 7 |a 10.1007/s00211-012-0511-7  |2 doi 
035 |a (DE-627)100875417X 
035 |a (DE-599)GBV100875417X 
035 |a (OCoLC)1340370457 
040 |a DE-627  |b ger  |c DE-627  |e rda 
041 |a eng 
084 |a 27  |2 sdnb 
100 1 |a Richter, Thomas  |e VerfasserIn  |0 (DE-588)1025367154  |0 (DE-627)722167822  |0 (DE-576)370268547  |4 aut 
245 1 0 |a Efficient numerical realization of discontinuous Galerkin methods for temporal discretization of parabolic problems  |c Thomas Richter · Andreas Springer · Boris Vexle 
264 1 |c 2013 
300 |a 32 
336 |a Text  |b txt  |2 rdacontent 
337 |a Computermedien  |b c  |2 rdamedia 
338 |a Online-Ressource  |b cr  |2 rdacarrier 
500 |a Published online: 23 October 2012 
500 |a Gesehen am 11.01.2022 
520 |a We present an efficient and easy to implement approach to solving the semidiscrete equation systems resulting from time discretization of nonlinear parabolic problems with discontinuous Galerkin methods of order r. It is based on applying Newton’s method and decoupling the Newton update equation, which consists of a coupled system ofr +1 elliptic problems. In order to avoid complex coefficients which arise inevitably in the equations obtained by a direct decoupling, we decouple not the exact Newton update equation but a suitable approximation. The resulting solution scheme is shown to possess fast linear convergence and consists of several steps with same structure as implicit Euler steps. We construct concrete realizations for order one to three and give numerical evidence that the required computing time is reduced significantly compared to assembling and solving the complete coupled system by Newton’s method. 
700 1 |a Springer, Andreas  |e VerfasserIn  |0 (DE-588)1249160855  |0 (DE-627)1785420550  |4 aut 
700 1 |a Vexler, Boris  |d 1977-  |e VerfasserIn  |0 (DE-588)124498639  |0 (DE-627)573832749  |0 (DE-576)294200363  |4 aut 
773 0 8 |i Enthalten in  |t Numerische Mathematik  |d Berlin : Springer, 1959  |g 124(2013), 1, Seite 151-182  |h Online-Ressource  |w (DE-627)225690438  |w (DE-600)1364300-9  |w (DE-576)074528831  |x 0945-3245  |7 nnas  |a Efficient numerical realization of discontinuous Galerkin methods for temporal discretization of parabolic problems 
773 1 8 |g volume:124  |g year:2013  |g number:1  |g pages:151-182  |g extent:32  |a Efficient numerical realization of discontinuous Galerkin methods for temporal discretization of parabolic problems 
856 4 0 |u https://doi.org/10.1007/s00211-012-0511-7  |x Verlag  |x Resolving-System  |z lizenzpflichtig  |3 Volltext 
856 4 0 |u https://link.springer.com/article/10.1007%2Fs00211-012-0511-7  |x Verlag  |z lizenzpflichtig  |3 Volltext 
951 |a AR 
992 |a 20220111 
993 |a Article 
994 |a 2013 
998 |g 1025367154  |a Richter, Thomas  |m 1025367154:Richter, Thomas  |d 110000  |d 110200  |d 110000  |d 110400  |e 110000PR1025367154  |e 110200PR1025367154  |e 110000PR1025367154  |e 110400PR1025367154  |k 0/110000/  |k 1/110000/110200/  |k 0/110000/  |k 1/110000/110400/  |p 1  |x j 
999 |a KXP-PPN100875417X  |e 4032774129 
BIB |a Y 
SER |a journal 
JSO |a {"relHost":[{"physDesc":[{"extent":"Online-Ressource"}],"id":{"issn":["0945-3245"],"eki":["225690438"],"zdb":["1364300-9"]},"origin":[{"publisherPlace":"Berlin ; Heidelberg ; Berlin ; Heidelberg [u.a.]","publisher":"Springer ; Springer","dateIssuedKey":"1959","dateIssuedDisp":"1959-"}],"recId":"225690438","language":["eng"],"note":["Gesehen am 06.05.2022"],"type":{"bibl":"periodical","media":"Online-Ressource"},"disp":"Efficient numerical realization of discontinuous Galerkin methods for temporal discretization of parabolic problemsNumerische Mathematik","part":{"volume":"124","text":"124(2013), 1, Seite 151-182","extent":"32","year":"2013","issue":"1","pages":"151-182"},"pubHistory":["1.1959 -"],"title":[{"title_sort":"Numerische Mathematik","title":"Numerische Mathematik"}]}],"physDesc":[{"extent":"32 S."}],"id":{"eki":["100875417X"],"doi":["10.1007/s00211-012-0511-7"]},"origin":[{"dateIssuedKey":"2013","dateIssuedDisp":"2013"}],"name":{"displayForm":["Thomas Richter · Andreas Springer · Boris Vexle"]},"language":["eng"],"recId":"100875417X","note":["Published online: 23 October 2012","Gesehen am 11.01.2022"],"type":{"media":"Online-Ressource","bibl":"article-journal"},"title":[{"title":"Efficient numerical realization of discontinuous Galerkin methods for temporal discretization of parabolic problems","title_sort":"Efficient numerical realization of discontinuous Galerkin methods for temporal discretization of parabolic problems"}],"person":[{"given":"Thomas","family":"Richter","role":"aut","display":"Richter, Thomas","roleDisplay":"VerfasserIn"},{"family":"Springer","given":"Andreas","roleDisplay":"VerfasserIn","display":"Springer, Andreas","role":"aut"},{"role":"aut","roleDisplay":"VerfasserIn","display":"Vexler, Boris","given":"Boris","family":"Vexler"}]} 
SRT |a RICHTERTHOEFFICIENTN2013