Finite element approximation of the nonstationary Navier-Stokes problem: part I: regularity of solutions and second-order error estimates for spatial discretization
Gespeichert in:
| Hauptverfasser: | , |
|---|---|
| Dokumenttyp: | Article (Journal) |
| Sprache: | Englisch |
| Veröffentlicht: |
1982
|
| In: |
SIAM journal on numerical analysis
Year: 1982, Jahrgang: 19, Heft: 2, Pages: 275-311 |
| ISSN: | 1095-7170 |
| DOI: | 10.1137/0719018 |
| Online-Zugang: | Resolving-System, Volltext: http://dx.doi.org/10.1137/0719018 |
| Verfasserangaben: | John G. Heywood; Rolf Rannacher |
MARC
| LEADER | 00000caa a22000002c 4500 | ||
|---|---|---|---|
| 001 | 1440191077 | ||
| 003 | DE-627 | ||
| 005 | 20220810180239.0 | ||
| 007 | cr uuu---uuuuu | ||
| 008 | 120822s1982 xx |||||o 00| ||eng c | ||
| 024 | 7 | |a 10.1137/0719018 |2 doi | |
| 035 | |a (DE-627)1440191077 | ||
| 035 | |a (DE-576)370191072 | ||
| 035 | |a (DE-599)BSZ370191072 | ||
| 035 | |a (OCoLC)1340426655 | ||
| 040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
| 041 | |a eng | ||
| 084 | |a 27 |2 sdnb | ||
| 100 | 1 | |a Heywood, John G. |4 aut | |
| 245 | 1 | 0 | |a Finite element approximation of the nonstationary Navier-Stokes problem |b part I: regularity of solutions and second-order error estimates for spatial discretization |c John G. Heywood; Rolf Rannacher |
| 264 | 1 | |c 1982 | |
| 300 | |a 37 | ||
| 336 | |a Text |b txt |2 rdacontent | ||
| 337 | |a Computermedien |b c |2 rdamedia | ||
| 338 | |a Online-Ressource |b cr |2 rdacarrier | ||
| 700 | 1 | |a Rannacher, Rolf |d 1948- |0 (DE-588)108664732 |0 (DE-627)642491224 |0 (DE-576)335024076 |4 aut | |
| 773 | 0 | 8 | |i In |a Society for Industrial and Applied Mathematics |t SIAM journal on numerical analysis |d Philadelphia, Pa. : SIAM, 1966 |g 19(1982), 2, Seite 275-311 |h Online-Ressource |w (DE-627)266885446 |w (DE-600)1468409-3 |w (DE-576)075961660 |x 1095-7170 |7 nnas |
| 773 | 1 | 8 | |g volume:19 |g year:1982 |g number:2 |g pages:275-311 |g extent:37 |a Finite element approximation of the nonstationary Navier-Stokes problem part I: regularity of solutions and second-order error estimates for spatial discretization |
| 856 | 4 | 0 | |u http://dx.doi.org/10.1137/0719018 |x Resolving-System |3 Volltext |
| 951 | |a AR | ||
| 992 | |a 20120822 | ||
| 993 | |a Article | ||
| 994 | |a 1982 | ||
| 998 | |g 108664732 |a Rannacher, Rolf |m 108664732:Rannacher, Rolf |p 2 |y j | ||
| 999 | |a KXP-PPN1440191077 |e 2721445448 | ||
| BIB | |a Y | ||
| SER | |a journal | ||
| JSO | |a {"name":{"displayForm":["John G. Heywood; Rolf Rannacher"]},"relHost":[{"name":{"displayForm":["Society for Industrial and Applied Mathematics"]},"titleAlt":[{"title":"Journal on numerical analysis"}],"recId":"266885446","origin":[{"dateIssuedKey":"1966","publisher":"SIAM","publisherPlace":"Philadelphia, Pa.","dateIssuedDisp":"1966-"}],"disp":"Society for Industrial and Applied MathematicsSIAM journal on numerical analysis","language":["eng"],"title":[{"title":"SIAM journal on numerical analysis","title_sort":"SIAM journal on numerical analysis"}],"corporate":[{"role":"aut","display":"Society for Industrial and Applied Mathematics","roleDisplay":"VerfasserIn"}],"pubHistory":["3.1966 -"],"id":{"zdb":["1468409-3"],"eki":["266885446"],"issn":["1095-7170"]},"physDesc":[{"extent":"Online-Ressource"}],"note":["Gesehen am 02.07.2021"],"part":{"issue":"2","pages":"275-311","year":"1982","extent":"37","volume":"19","text":"19(1982), 2, Seite 275-311"},"type":{"media":"Online-Ressource","bibl":"periodical"}}],"id":{"doi":["10.1137/0719018"],"eki":["1440191077"]},"physDesc":[{"extent":"37 S."}],"recId":"1440191077","origin":[{"dateIssuedDisp":"1982","dateIssuedKey":"1982"}],"person":[{"role":"aut","given":"John G.","family":"Heywood","display":"Heywood, John G."},{"given":"Rolf","role":"aut","display":"Rannacher, Rolf","family":"Rannacher"}],"language":["eng"],"type":{"media":"Online-Ressource","bibl":"article-journal"},"title":[{"title_sort":"Finite element approximation of the nonstationary Navier-Stokes problem","title":"Finite element approximation of the nonstationary Navier-Stokes problem","subtitle":"part I: regularity of solutions and second-order error estimates for spatial discretization"}]} | ||
| SRT | |a HEYWOODJOHFINITEELEM1982 | ||