Inverse curvature flows in hyperbolic space

We consider inverse curvature ows in Hn+1 with star-shaped initial hypersurfaces and prove that the ows exist for all time, and that the leaves converge to infinity, become strongly convex exponentially fast and also more and more totally umbilic. After an appropriate rescaling the leaves converge i...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
1. Verfasser: Gerhardt, Claus (VerfasserIn)
Dokumenttyp: Article (Journal)
Sprache:Englisch
Veröffentlicht: 2011
In: Journal of differential geometry
Year: 2011, Jahrgang: 89, Heft: 3, Pages: 487-527
ISSN:1945-743X
DOI:10.4310/jdg/1335207376
Online-Zugang:Verlag, kostenfrei, Volltext: https://doi.org/10.4310/jdg/1335207376
Verlag, kostenfrei, Volltext: https://projecteuclid.org/journals/journal-of-differential-geometry/volume-89/issue-3/Inverse-curvature-flows-in-hyperbolic-space/10.4310/jdg/1335207376.full
Verlag, Volltext: http://projecteuclid.org/euclid.jdg/1335207376
Volltext
Verfasserangaben:Claus Gerhardt
Beschreibung
Zusammenfassung:We consider inverse curvature ows in Hn+1 with star-shaped initial hypersurfaces and prove that the ows exist for all time, and that the leaves converge to infinity, become strongly convex exponentially fast and also more and more totally umbilic. After an appropriate rescaling the leaves converge in C∞ to a sphere.
Beschreibung:Gesehen am 08.11.2023
Beschreibung:Online Resource
ISSN:1945-743X
DOI:10.4310/jdg/1335207376