Targeting of vacuolar membrane localized members of the TPK channel family

Four members of the tandem-pore potassium channel family of Arabidopsis thaliana (TPK1, 2, 3, and 5) reside in the vacuolar membrane, whereas TPK4 is a plasma membrane K+-channel. By constructing chimeras between TPK1 and TPK4, we attempted to identify channel domains involved in the trafficking pro...

Full description

Saved in:
Bibliographic Details
Main Authors: Dunkel, Marcel (Author) , Schumacher, Karin (Author)
Format: Article (Journal)
Language:English
Published: 6 November 2008
In: Molecular plant
Year: 2008, Volume: 1, Issue: 6, Pages: 938-949
ISSN:1752-9867
DOI:10.1093/mp/ssn064
Online Access:Verlag, Volltext: http://dx.doi.org/10.1093/mp/ssn064
Verlag, Volltext: http://www.sciencedirect.com/science/article/pii/S1674205214604512
Get full text
Author Notes:Marcel Dunkel, Andreas Latz, Karin Schumacher, Thomas Müller, Dirk Becker, Rainer Hedrich
Description
Summary:Four members of the tandem-pore potassium channel family of Arabidopsis thaliana (TPK1, 2, 3, and 5) reside in the vacuolar membrane, whereas TPK4 is a plasma membrane K+-channel. By constructing chimeras between TPK1 and TPK4, we attempted to identify channel domains involved in the trafficking process and found that the TPK1 cytoplasmic C-terminal domain (CT) is critical for the ER-as well as Golgi-sorting steps. Following site-directed mutagenesis, we identified a diacidic motif (DLE) required for ER-export of TPK1. However, this diacidic motif in the C-terminus is not conserved among other members of the TPK family, and TPK3 sorting is independent of its CT. Moreover, the 14-3-3 binding site of TPK1, essential for channel activation, is not involved in channel sorting.
Item Description:Gesehen am 10.05.2017
Physical Description:Online Resource
ISSN:1752-9867
DOI:10.1093/mp/ssn064