Bifurcation analysis of a diffusion-ODE model with Turing instability and hysteresis
This paper is devoted to the existence and (in)stability of nonconstant steady-states in a system of a semilinear parabolic equation coupled to an ODE, which is a simplified version of a receptor-ligand model of pattern formation. In the neighborhood of a constant steady-state, we construct spatiall...
Saved in:
| Main Authors: | , , |
|---|---|
| Format: | Article (Journal) |
| Language: | English |
| Published: |
7 July 2017
|
| In: |
Hiroshima mathematical journal
Year: 2017, Volume: 47, Issue: 2, Pages: 217-247 |
| ISSN: | 2758-9641 |
| Online Access: | Verlag, kostenfrei, Volltext: http://projecteuclid.org/euclid.hmj/1499392826 Verlag, kostenfrei, Volltext: http://projecteuclid.org/download/pdf_1/euclid.hmj/1499392826 |
| Author Notes: | Ying Li, Anna Marciniak-Czochra, Izumi Takagi, Boying Wu |
MARC
| LEADER | 00000caa a2200000 c 4500 | ||
|---|---|---|---|
| 001 | 1561205540 | ||
| 003 | DE-627 | ||
| 005 | 20220813202854.0 | ||
| 007 | cr uuu---uuuuu | ||
| 008 | 170726s2017 xx |||||o 00| ||eng c | ||
| 035 | |a (DE-627)1561205540 | ||
| 035 | |a (DE-576)491205546 | ||
| 035 | |a (DE-599)BSZ491205546 | ||
| 035 | |a (OCoLC)1340977894 | ||
| 040 | |a DE-627 |b ger |c DE-627 |e rda | ||
| 041 | |a eng | ||
| 084 | |a 27 |2 sdnb | ||
| 100 | 1 | |a Li, Ying |e VerfasserIn |0 (DE-588)1137271043 |0 (DE-627)894262416 |0 (DE-576)491204973 |4 aut | |
| 245 | 1 | 0 | |a Bifurcation analysis of a diffusion-ODE model with Turing instability and hysteresis |c Ying Li, Anna Marciniak-Czochra, Izumi Takagi, Boying Wu |
| 264 | 1 | |c 7 July 2017 | |
| 300 | |a 31 | ||
| 336 | |a Text |b txt |2 rdacontent | ||
| 337 | |a Computermedien |b c |2 rdamedia | ||
| 338 | |a Online-Ressource |b cr |2 rdacarrier | ||
| 500 | |a Gesehen am 26.07.2017 | ||
| 520 | |a This paper is devoted to the existence and (in)stability of nonconstant steady-states in a system of a semilinear parabolic equation coupled to an ODE, which is a simplified version of a receptor-ligand model of pattern formation. In the neighborhood of a constant steady-state, we construct spatially heterogeneous steady-states by applying the bifurcation theory. We also study the structure of the spectrum of the linearized operator and show that bifurcating steady-states are unstable against high wave number disturbances. In addition, we consider the global behavior of the bifurcating branches of nonconstant steady-states. These are quite different from classical reaction-diffusion systems where all species diffuse. | ||
| 650 | 4 | |a bifurcation analysis | |
| 650 | 4 | |a global behavior of solution branches | |
| 650 | 4 | |a instability | |
| 650 | 4 | |a pattern formation | |
| 650 | 4 | |a reaction-diffusion-ODE system | |
| 650 | 4 | |a steady-states | |
| 700 | 1 | |a Marciniak-Czochra, Anna |d 1974- |e VerfasserIn |0 (DE-588)1044379626 |0 (DE-627)771928432 |0 (DE-576)397031505 |4 aut | |
| 700 | 1 | |a Takagi, Izumi |e VerfasserIn |0 (DE-588)1137271175 |0 (DE-627)894262696 |0 (DE-576)409770094 |4 aut | |
| 773 | 0 | 8 | |i Enthalten in |t Hiroshima mathematical journal |d Hiroshima : Department of Mathematics, Hiroshima University, 1971 |g 47(2017), 2, Seite 217-247 |h Online-Ressource |w (DE-627)347753515 |w (DE-600)2078840-X |w (DE-576)104344849 |x 2758-9641 |7 nnas |a Bifurcation analysis of a diffusion-ODE model with Turing instability and hysteresis |
| 773 | 1 | 8 | |g volume:47 |g year:2017 |g number:2 |g pages:217-247 |g extent:31 |a Bifurcation analysis of a diffusion-ODE model with Turing instability and hysteresis |
| 856 | 4 | 0 | |u http://projecteuclid.org/euclid.hmj/1499392826 |x Verlag |z kostenfrei |3 Volltext |
| 856 | 4 | 0 | |u http://projecteuclid.org/download/pdf_1/euclid.hmj/1499392826 |x Verlag |z kostenfrei |3 Volltext |
| 951 | |a AR | ||
| 992 | |a 20170726 | ||
| 993 | |a Article | ||
| 994 | |a 2017 | ||
| 998 | |g 1044379626 |a Marciniak-Czochra, Anna |m 1044379626:Marciniak-Czochra, Anna |d 110000 |d 110200 |d 110000 |d 110400 |e 110000PM1044379626 |e 110200PM1044379626 |e 110000PM1044379626 |e 110400PM1044379626 |k 0/110000/ |k 1/110000/110200/ |k 0/110000/ |k 1/110000/110400/ |p 2 | ||
| 999 | |a KXP-PPN1561205540 |e 2975191464 | ||
| BIB | |a Y | ||
| SER | |a journal | ||
| JSO | |a {"relHost":[{"id":{"issn":["2758-9641"],"eki":["347753515"],"zdb":["2078840-X"]},"recId":"347753515","pubHistory":["1.1971 -"],"physDesc":[{"extent":"Online-Ressource"}],"name":{"displayForm":["Department of Mathematics, Hiroshima University"]},"language":["eng"],"part":{"issue":"2","volume":"47","extent":"31","pages":"217-247","text":"47(2017), 2, Seite 217-247","year":"2017"},"titleAlt":[{"title":"HMJ online"},{"title":"HMJ"}],"note":["Gesehen am 26.09.24","Fortsetzung der Druck-Ausgabe"],"origin":[{"dateIssuedDisp":"1971-","publisherPlace":"Hiroshima","publisher":"Department of Mathematics, Hiroshima University","dateIssuedKey":"1971"}],"type":{"bibl":"periodical","media":"Online-Ressource"},"title":[{"title":"Hiroshima mathematical journal","title_sort":"Hiroshima mathematical journal","subtitle":"HMJ"}],"disp":"Bifurcation analysis of a diffusion-ODE model with Turing instability and hysteresisHiroshima mathematical journal","corporate":[{"role":"isb","display":"Hiroshima-daigaku"}]}],"id":{"eki":["1561205540"]},"name":{"displayForm":["Ying Li, Anna Marciniak-Czochra, Izumi Takagi, Boying Wu"]},"physDesc":[{"extent":"31 S."}],"recId":"1561205540","origin":[{"dateIssuedKey":"2017","dateIssuedDisp":"7 July 2017"}],"note":["Gesehen am 26.07.2017"],"title":[{"title_sort":"Bifurcation analysis of a diffusion-ODE model with Turing instability and hysteresis","title":"Bifurcation analysis of a diffusion-ODE model with Turing instability and hysteresis"}],"type":{"media":"Online-Ressource","bibl":"article-journal"},"language":["eng"],"person":[{"display":"Li, Ying","family":"Li","role":"aut","given":"Ying"},{"display":"Marciniak-Czochra, Anna","family":"Marciniak-Czochra","role":"aut","given":"Anna"},{"family":"Takagi","display":"Takagi, Izumi","role":"aut","given":"Izumi"}]} | ||
| SRT | |a LIYINGMARCBIFURCATIO7201 | ||