Bifurcation analysis of a diffusion-ODE model with Turing instability and hysteresis

This paper is devoted to the existence and (in)stability of nonconstant steady-states in a system of a semilinear parabolic equation coupled to an ODE, which is a simplified version of a receptor-ligand model of pattern formation. In the neighborhood of a constant steady-state, we construct spatiall...

Full description

Saved in:
Bibliographic Details
Main Authors: Li, Ying (Author) , Marciniak-Czochra, Anna (Author) , Takagi, Izumi (Author)
Format: Article (Journal)
Language:English
Published: 7 July 2017
In: Hiroshima mathematical journal
Year: 2017, Volume: 47, Issue: 2, Pages: 217-247
ISSN:2758-9641
Online Access:Verlag, kostenfrei, Volltext: http://projecteuclid.org/euclid.hmj/1499392826
Verlag, kostenfrei, Volltext: http://projecteuclid.org/download/pdf_1/euclid.hmj/1499392826
Get full text
Author Notes:Ying Li, Anna Marciniak-Czochra, Izumi Takagi, Boying Wu

MARC

LEADER 00000caa a2200000 c 4500
001 1561205540
003 DE-627
005 20220813202854.0
007 cr uuu---uuuuu
008 170726s2017 xx |||||o 00| ||eng c
035 |a (DE-627)1561205540 
035 |a (DE-576)491205546 
035 |a (DE-599)BSZ491205546 
035 |a (OCoLC)1340977894 
040 |a DE-627  |b ger  |c DE-627  |e rda 
041 |a eng 
084 |a 27  |2 sdnb 
100 1 |a Li, Ying  |e VerfasserIn  |0 (DE-588)1137271043  |0 (DE-627)894262416  |0 (DE-576)491204973  |4 aut 
245 1 0 |a Bifurcation analysis of a diffusion-ODE model with Turing instability and hysteresis  |c Ying Li, Anna Marciniak-Czochra, Izumi Takagi, Boying Wu 
264 1 |c 7 July 2017 
300 |a 31 
336 |a Text  |b txt  |2 rdacontent 
337 |a Computermedien  |b c  |2 rdamedia 
338 |a Online-Ressource  |b cr  |2 rdacarrier 
500 |a Gesehen am 26.07.2017 
520 |a This paper is devoted to the existence and (in)stability of nonconstant steady-states in a system of a semilinear parabolic equation coupled to an ODE, which is a simplified version of a receptor-ligand model of pattern formation. In the neighborhood of a constant steady-state, we construct spatially heterogeneous steady-states by applying the bifurcation theory. We also study the structure of the spectrum of the linearized operator and show that bifurcating steady-states are unstable against high wave number disturbances. In addition, we consider the global behavior of the bifurcating branches of nonconstant steady-states. These are quite different from classical reaction-diffusion systems where all species diffuse. 
650 4 |a bifurcation analysis 
650 4 |a global behavior of solution branches 
650 4 |a instability 
650 4 |a pattern formation 
650 4 |a reaction-diffusion-ODE system 
650 4 |a steady-states 
700 1 |a Marciniak-Czochra, Anna  |d 1974-  |e VerfasserIn  |0 (DE-588)1044379626  |0 (DE-627)771928432  |0 (DE-576)397031505  |4 aut 
700 1 |a Takagi, Izumi  |e VerfasserIn  |0 (DE-588)1137271175  |0 (DE-627)894262696  |0 (DE-576)409770094  |4 aut 
773 0 8 |i Enthalten in  |t Hiroshima mathematical journal  |d Hiroshima : Department of Mathematics, Hiroshima University, 1971  |g 47(2017), 2, Seite 217-247  |h Online-Ressource  |w (DE-627)347753515  |w (DE-600)2078840-X  |w (DE-576)104344849  |x 2758-9641  |7 nnas  |a Bifurcation analysis of a diffusion-ODE model with Turing instability and hysteresis 
773 1 8 |g volume:47  |g year:2017  |g number:2  |g pages:217-247  |g extent:31  |a Bifurcation analysis of a diffusion-ODE model with Turing instability and hysteresis 
856 4 0 |u http://projecteuclid.org/euclid.hmj/1499392826  |x Verlag  |z kostenfrei  |3 Volltext 
856 4 0 |u http://projecteuclid.org/download/pdf_1/euclid.hmj/1499392826  |x Verlag  |z kostenfrei  |3 Volltext 
951 |a AR 
992 |a 20170726 
993 |a Article 
994 |a 2017 
998 |g 1044379626  |a Marciniak-Czochra, Anna  |m 1044379626:Marciniak-Czochra, Anna  |d 110000  |d 110200  |d 110000  |d 110400  |e 110000PM1044379626  |e 110200PM1044379626  |e 110000PM1044379626  |e 110400PM1044379626  |k 0/110000/  |k 1/110000/110200/  |k 0/110000/  |k 1/110000/110400/  |p 2 
999 |a KXP-PPN1561205540  |e 2975191464 
BIB |a Y 
SER |a journal 
JSO |a {"relHost":[{"id":{"issn":["2758-9641"],"eki":["347753515"],"zdb":["2078840-X"]},"recId":"347753515","pubHistory":["1.1971 -"],"physDesc":[{"extent":"Online-Ressource"}],"name":{"displayForm":["Department of Mathematics, Hiroshima University"]},"language":["eng"],"part":{"issue":"2","volume":"47","extent":"31","pages":"217-247","text":"47(2017), 2, Seite 217-247","year":"2017"},"titleAlt":[{"title":"HMJ online"},{"title":"HMJ"}],"note":["Gesehen am 26.09.24","Fortsetzung der Druck-Ausgabe"],"origin":[{"dateIssuedDisp":"1971-","publisherPlace":"Hiroshima","publisher":"Department of Mathematics, Hiroshima University","dateIssuedKey":"1971"}],"type":{"bibl":"periodical","media":"Online-Ressource"},"title":[{"title":"Hiroshima mathematical journal","title_sort":"Hiroshima mathematical journal","subtitle":"HMJ"}],"disp":"Bifurcation analysis of a diffusion-ODE model with Turing instability and hysteresisHiroshima mathematical journal","corporate":[{"role":"isb","display":"Hiroshima-daigaku"}]}],"id":{"eki":["1561205540"]},"name":{"displayForm":["Ying Li, Anna Marciniak-Czochra, Izumi Takagi, Boying Wu"]},"physDesc":[{"extent":"31 S."}],"recId":"1561205540","origin":[{"dateIssuedKey":"2017","dateIssuedDisp":"7 July 2017"}],"note":["Gesehen am 26.07.2017"],"title":[{"title_sort":"Bifurcation analysis of a diffusion-ODE model with Turing instability and hysteresis","title":"Bifurcation analysis of a diffusion-ODE model with Turing instability and hysteresis"}],"type":{"media":"Online-Ressource","bibl":"article-journal"},"language":["eng"],"person":[{"display":"Li, Ying","family":"Li","role":"aut","given":"Ying"},{"display":"Marciniak-Czochra, Anna","family":"Marciniak-Czochra","role":"aut","given":"Anna"},{"family":"Takagi","display":"Takagi, Izumi","role":"aut","given":"Izumi"}]} 
SRT |a LIYINGMARCBIFURCATIO7201