Instability of turing patterns in reaction-diffusion-ODE systems
The aim of this paper is to contribute to the understanding of the pattern formation phenomenon in reaction-diffusion equations coupled with ordinary differential equations. Such systems of equations arise, for example, from modeling of interactions between cellular processes such as cell growth, di...
Gespeichert in:
| Hauptverfasser: | , , |
|---|---|
| Dokumenttyp: | Article (Journal) |
| Sprache: | Englisch |
| Veröffentlicht: |
2017
|
| In: |
Journal of mathematical biology
Year: 2017, Jahrgang: 74, Heft: 3, Pages: 583-618 |
| ISSN: | 1432-1416 |
| DOI: | 10.1007/s00285-016-1035-z |
| Online-Zugang: | Verlag, Volltext: http://dx.doi.org/10.1007/s00285-016-1035-z Verlag, Volltext: https://link.springer.com/article/10.1007/s00285-016-1035-z Verlag, Volltext: https://link.springer.com/content/pdf/10.1007%2Fs00285-016-1035-z.pdf |
| Verfasserangaben: | Anna Marciniak-Czochra, Grzegorz Karch, Kanako Suzuki |
MARC
| LEADER | 00000caa a2200000 c 4500 | ||
|---|---|---|---|
| 001 | 1561208892 | ||
| 003 | DE-627 | ||
| 005 | 20220813202910.0 | ||
| 007 | cr uuu---uuuuu | ||
| 008 | 170726s2017 xx |||||o 00| ||eng c | ||
| 024 | 7 | |a 10.1007/s00285-016-1035-z |2 doi | |
| 035 | |a (DE-627)1561208892 | ||
| 035 | |a (DE-576)491208898 | ||
| 035 | |a (DE-599)BSZ491208898 | ||
| 035 | |a (OCoLC)1340977873 | ||
| 040 | |a DE-627 |b ger |c DE-627 |e rda | ||
| 041 | |a eng | ||
| 084 | |a 32 |2 sdnb | ||
| 100 | 1 | |a Marciniak-Czochra, Anna |d 1974- |e VerfasserIn |0 (DE-588)1044379626 |0 (DE-627)771928432 |0 (DE-576)397031505 |4 aut | |
| 245 | 1 | 0 | |a Instability of turing patterns in reaction-diffusion-ODE systems |c Anna Marciniak-Czochra, Grzegorz Karch, Kanako Suzuki |
| 264 | 1 | |c 2017 | |
| 300 | |a 36 | ||
| 336 | |a Text |b txt |2 rdacontent | ||
| 337 | |a Computermedien |b c |2 rdamedia | ||
| 338 | |a Online-Ressource |b cr |2 rdacarrier | ||
| 500 | |a First online 15 June 2016 | ||
| 500 | |a Gesehen am 26.07.2017 | ||
| 520 | |a The aim of this paper is to contribute to the understanding of the pattern formation phenomenon in reaction-diffusion equations coupled with ordinary differential equations. Such systems of equations arise, for example, from modeling of interactions between cellular processes such as cell growth, differentiation or transformation and diffusing signaling factors. We focus on stability analysis of solutions of a prototype model consisting of a single reaction-diffusion equation coupled to an ordinary differential equation. We show that such systems are very different from classical reaction-diffusion models. They exhibit diffusion-driven instability (turing instability) under a condition of autocatalysis of non-diffusing component. However, the same mechanism which destabilizes constant solutions of such models, destabilizes also all continuous spatially heterogeneous stationary solutions, and consequently, there exist no stable Turing patterns in such reaction-diffusion-ODE systems. We provide a rigorous result on the nonlinear instability, which involves the analysis of a continuous spectrum of a linear operator induced by the lack of diffusion in the destabilizing equation. These results are extended to discontinuous patterns for a class of nonlinearities. | ||
| 700 | 1 | |a Karch, Grzegorz |e VerfasserIn |0 (DE-588)1119925223 |0 (DE-627)873033469 |0 (DE-576)409787655 |4 aut | |
| 700 | 1 | |a Suzuki, Kanako |e VerfasserIn |0 (DE-588)1119925789 |0 (DE-627)873637720 |0 (DE-576)409787663 |4 aut | |
| 773 | 0 | 8 | |i Enthalten in |t Journal of mathematical biology |d Berlin : Springer, 1974 |g 74(2017), 3, Seite 583-618 |h Online-Ressource |w (DE-627)242065082 |w (DE-600)1421292-4 |w (DE-576)065026489 |x 1432-1416 |7 nnas |a Instability of turing patterns in reaction-diffusion-ODE systems |
| 773 | 1 | 8 | |g volume:74 |g year:2017 |g number:3 |g pages:583-618 |g extent:36 |a Instability of turing patterns in reaction-diffusion-ODE systems |
| 856 | 4 | 0 | |u http://dx.doi.org/10.1007/s00285-016-1035-z |x Verlag |x Resolving-System |3 Volltext |
| 856 | 4 | 0 | |u https://link.springer.com/article/10.1007/s00285-016-1035-z |x Verlag |3 Volltext |
| 856 | 4 | 0 | |u https://link.springer.com/content/pdf/10.1007%2Fs00285-016-1035-z.pdf |x Verlag |3 Volltext |
| 951 | |a AR | ||
| 992 | |a 20170726 | ||
| 993 | |a Article | ||
| 994 | |a 2017 | ||
| 998 | |g 1044379626 |a Marciniak-Czochra, Anna |m 1044379626:Marciniak-Czochra, Anna |d 110000 |d 110200 |d 110000 |d 110400 |e 110000PM1044379626 |e 110200PM1044379626 |e 110000PM1044379626 |e 110400PM1044379626 |k 0/110000/ |k 1/110000/110200/ |k 0/110000/ |k 1/110000/110400/ |p 1 |x j | ||
| 999 | |a KXP-PPN1561208892 |e 2975195834 | ||
| BIB | |a Y | ||
| SER | |a journal | ||
| JSO | |a {"language":["eng"],"recId":"1561208892","type":{"bibl":"article-journal","media":"Online-Ressource"},"note":["First online 15 June 2016","Gesehen am 26.07.2017"],"person":[{"family":"Marciniak-Czochra","given":"Anna","roleDisplay":"VerfasserIn","display":"Marciniak-Czochra, Anna","role":"aut"},{"given":"Grzegorz","family":"Karch","role":"aut","display":"Karch, Grzegorz","roleDisplay":"VerfasserIn"},{"display":"Suzuki, Kanako","roleDisplay":"VerfasserIn","role":"aut","family":"Suzuki","given":"Kanako"}],"title":[{"title_sort":"Instability of turing patterns in reaction-diffusion-ODE systems","title":"Instability of turing patterns in reaction-diffusion-ODE systems"}],"relHost":[{"physDesc":[{"extent":"Online-Ressource"}],"origin":[{"publisherPlace":"Berlin ; Heidelberg ; New York","dateIssuedKey":"1974","publisher":"Springer","dateIssuedDisp":"1974-"}],"id":{"issn":["1432-1416"],"zdb":["1421292-4"],"eki":["242065082"]},"disp":"Instability of turing patterns in reaction-diffusion-ODE systemsJournal of mathematical biology","note":["Gesehen am 17.10.05"],"type":{"media":"Online-Ressource","bibl":"periodical"},"language":["eng"],"recId":"242065082","pubHistory":["1.1974/75 -"],"titleAlt":[{"title":"Mathematical biology"}],"part":{"issue":"3","pages":"583-618","year":"2017","extent":"36","text":"74(2017), 3, Seite 583-618","volume":"74"},"title":[{"title":"Journal of mathematical biology","title_sort":"Journal of mathematical biology"}]}],"physDesc":[{"extent":"36 S."}],"name":{"displayForm":["Anna Marciniak-Czochra, Grzegorz Karch, Kanako Suzuki"]},"id":{"doi":["10.1007/s00285-016-1035-z"],"eki":["1561208892"]},"origin":[{"dateIssuedKey":"2017","dateIssuedDisp":"2017"}]} | ||
| SRT | |a MARCINIAKCINSTABILIT2017 | ||