Mathematical modeling of bacteria communication in continuous cultures

Quorum sensing is a bacterial cell-to-cell communication mechanism and is based on gene regulatory networks, which control and regulate the production of signaling molecules in the environment. In the past years, mathematical modeling of quorum sensing has provided an understanding of key components...

Full description

Saved in:
Bibliographic Details
Main Authors: Barbarossa, Maria Vittoria (Author) , Kuttler, Christina (Author)
Format: Article (Journal)
Language:English
Published: 16 May 2016
In: Applied Sciences
Year: 2016, Volume: 6, Issue: 5
ISSN:2076-3417
DOI:10.3390/app6050149
Online Access:Verlag, kostenfrei, Volltext: http://dx.doi.org/10.3390/app6050149
Verlag, kostenfrei, Volltext: http://www.mdpi.com/2076-3417/6/5/149
Get full text
Author Notes:Maria Vittoria Barbarossa, Christina Kuttler

MARC

LEADER 00000caa a2200000 c 4500
001 1561219827
003 DE-627
005 20220813202951.0
007 cr uuu---uuuuu
008 170726s2016 xx |||||o 00| ||eng c
024 7 |a 10.3390/app6050149  |2 doi 
035 |a (DE-627)1561219827 
035 |a (DE-576)491219822 
035 |a (DE-599)BSZ491219822 
035 |a (OCoLC)1340977904 
040 |a DE-627  |b ger  |c DE-627  |e rda 
041 |a eng 
084 |a 27  |2 sdnb 
100 1 |a Barbarossa, Maria Vittoria  |e VerfasserIn  |0 (DE-588)1036989054  |0 (DE-627)75171268X  |0 (DE-576)390788147  |4 aut 
245 1 0 |a Mathematical modeling of bacteria communication in continuous cultures  |c Maria Vittoria Barbarossa, Christina Kuttler 
264 1 |c 16 May 2016 
300 |a 17 
336 |a Text  |b txt  |2 rdacontent 
337 |a Computermedien  |b c  |2 rdamedia 
338 |a Online-Ressource  |b cr  |2 rdacarrier 
500 |a Gesehen am 26.07.2017 
520 |a Quorum sensing is a bacterial cell-to-cell communication mechanism and is based on gene regulatory networks, which control and regulate the production of signaling molecules in the environment. In the past years, mathematical modeling of quorum sensing has provided an understanding of key components of such networks, including several feedback loops involved. This paper presents a simple system of delay differential equations (DDEs) for quorum sensing of Pseudomonas putida with one positive feedback plus one (delayed) negative feedback mechanism. Results are shown concerning fundamental properties of solutions, such as existence, uniqueness, and non-negativity; the last feature is crucial for mathematical models in biology and is often violated when working with DDEs. The qualitative behavior of solutions is investigated, especially the stationary states and their stability. It is shown that for a certain choice of parameter values, the system presents stability switches with respect to the delay. On the other hand, when the delay is set to zero, a Hopf bifurcation might occur with respect to one of the negative feedback parameters. Model parameters are fitted to experimental data, indicating that the delay system is sufficient to explain and predict the biological observations. 
650 4 |a bifurcations 
650 4 |a chemostat 
650 4 |a delay 
650 4 |a differential equations 
650 4 |a dynamical system 
650 4 |a mathematical model 
650 4 |a numerical simulation 
650 4 |a quorum sensing 
700 1 |a Kuttler, Christina  |d 1973-  |e VerfasserIn  |0 (DE-588)122061705  |0 (DE-627)081712413  |0 (DE-576)293072272  |4 aut 
773 0 8 |i Enthalten in  |t Applied Sciences  |d Basel : MDPI, 2011  |g 6(2016), 5  |h Online-Ressource  |w (DE-627)737287640  |w (DE-600)2704225-X  |w (DE-576)379466716  |x 2076-3417  |7 nnas  |a Mathematical modeling of bacteria communication in continuous cultures 
773 1 8 |g volume:6  |g year:2016  |g number:5  |g extent:17  |a Mathematical modeling of bacteria communication in continuous cultures 
856 4 0 |u http://dx.doi.org/10.3390/app6050149  |x Verlag  |x Resolving-System  |z kostenfrei  |3 Volltext 
856 4 0 |u http://www.mdpi.com/2076-3417/6/5/149  |x Verlag  |z kostenfrei  |3 Volltext 
951 |a AR 
992 |a 20170726 
993 |a Article 
994 |a 2016 
998 |g 1036989054  |a Barbarossa, Maria Vittoria  |m 1036989054:Barbarossa, Maria Vittoria  |d 110000  |d 110200  |d 110000  |d 110400  |e 110000PB1036989054  |e 110200PB1036989054  |e 110000PB1036989054  |e 110400PB1036989054  |k 0/110000/  |k 1/110000/110200/  |k 0/110000/  |k 1/110000/110400/  |p 1  |x j 
999 |a KXP-PPN1561219827  |e 2975214847 
BIB |a Y 
SER |a journal 
JSO |a {"origin":[{"dateIssuedKey":"2016","dateIssuedDisp":"16 May 2016"}],"id":{"doi":["10.3390/app6050149"],"eki":["1561219827"]},"name":{"displayForm":["Maria Vittoria Barbarossa, Christina Kuttler"]},"physDesc":[{"extent":"17 S."}],"relHost":[{"type":{"media":"Online-Ressource","bibl":"periodical"},"note":["Gesehen am 19.02.13"],"disp":"Mathematical modeling of bacteria communication in continuous culturesApplied Sciences","language":["eng"],"recId":"737287640","pubHistory":["1.2011 -"],"part":{"extent":"17","text":"6(2016), 5","volume":"6","issue":"5","year":"2016"},"title":[{"subtitle":"open access journal","title":"Applied Sciences","title_sort":"Applied Sciences"}],"physDesc":[{"extent":"Online-Ressource"}],"origin":[{"dateIssuedDisp":"2011-","publisher":"MDPI","dateIssuedKey":"2011","publisherPlace":"Basel"}],"id":{"zdb":["2704225-X"],"eki":["737287640"],"issn":["2076-3417"]}}],"title":[{"title_sort":"Mathematical modeling of bacteria communication in continuous cultures","title":"Mathematical modeling of bacteria communication in continuous cultures"}],"person":[{"family":"Barbarossa","given":"Maria Vittoria","display":"Barbarossa, Maria Vittoria","roleDisplay":"VerfasserIn","role":"aut"},{"family":"Kuttler","given":"Christina","roleDisplay":"VerfasserIn","display":"Kuttler, Christina","role":"aut"}],"note":["Gesehen am 26.07.2017"],"type":{"bibl":"article-journal","media":"Online-Ressource"},"recId":"1561219827","language":["eng"]} 
SRT |a BARBAROSSAMATHEMATIC1620