Mathematical modeling of bacteria communication in continuous cultures
Quorum sensing is a bacterial cell-to-cell communication mechanism and is based on gene regulatory networks, which control and regulate the production of signaling molecules in the environment. In the past years, mathematical modeling of quorum sensing has provided an understanding of key components...
Saved in:
| Main Authors: | , |
|---|---|
| Format: | Article (Journal) |
| Language: | English |
| Published: |
16 May 2016
|
| In: |
Applied Sciences
Year: 2016, Volume: 6, Issue: 5 |
| ISSN: | 2076-3417 |
| DOI: | 10.3390/app6050149 |
| Online Access: | Verlag, kostenfrei, Volltext: http://dx.doi.org/10.3390/app6050149 Verlag, kostenfrei, Volltext: http://www.mdpi.com/2076-3417/6/5/149 |
| Author Notes: | Maria Vittoria Barbarossa, Christina Kuttler |
MARC
| LEADER | 00000caa a2200000 c 4500 | ||
|---|---|---|---|
| 001 | 1561219827 | ||
| 003 | DE-627 | ||
| 005 | 20220813202951.0 | ||
| 007 | cr uuu---uuuuu | ||
| 008 | 170726s2016 xx |||||o 00| ||eng c | ||
| 024 | 7 | |a 10.3390/app6050149 |2 doi | |
| 035 | |a (DE-627)1561219827 | ||
| 035 | |a (DE-576)491219822 | ||
| 035 | |a (DE-599)BSZ491219822 | ||
| 035 | |a (OCoLC)1340977904 | ||
| 040 | |a DE-627 |b ger |c DE-627 |e rda | ||
| 041 | |a eng | ||
| 084 | |a 27 |2 sdnb | ||
| 100 | 1 | |a Barbarossa, Maria Vittoria |e VerfasserIn |0 (DE-588)1036989054 |0 (DE-627)75171268X |0 (DE-576)390788147 |4 aut | |
| 245 | 1 | 0 | |a Mathematical modeling of bacteria communication in continuous cultures |c Maria Vittoria Barbarossa, Christina Kuttler |
| 264 | 1 | |c 16 May 2016 | |
| 300 | |a 17 | ||
| 336 | |a Text |b txt |2 rdacontent | ||
| 337 | |a Computermedien |b c |2 rdamedia | ||
| 338 | |a Online-Ressource |b cr |2 rdacarrier | ||
| 500 | |a Gesehen am 26.07.2017 | ||
| 520 | |a Quorum sensing is a bacterial cell-to-cell communication mechanism and is based on gene regulatory networks, which control and regulate the production of signaling molecules in the environment. In the past years, mathematical modeling of quorum sensing has provided an understanding of key components of such networks, including several feedback loops involved. This paper presents a simple system of delay differential equations (DDEs) for quorum sensing of Pseudomonas putida with one positive feedback plus one (delayed) negative feedback mechanism. Results are shown concerning fundamental properties of solutions, such as existence, uniqueness, and non-negativity; the last feature is crucial for mathematical models in biology and is often violated when working with DDEs. The qualitative behavior of solutions is investigated, especially the stationary states and their stability. It is shown that for a certain choice of parameter values, the system presents stability switches with respect to the delay. On the other hand, when the delay is set to zero, a Hopf bifurcation might occur with respect to one of the negative feedback parameters. Model parameters are fitted to experimental data, indicating that the delay system is sufficient to explain and predict the biological observations. | ||
| 650 | 4 | |a bifurcations | |
| 650 | 4 | |a chemostat | |
| 650 | 4 | |a delay | |
| 650 | 4 | |a differential equations | |
| 650 | 4 | |a dynamical system | |
| 650 | 4 | |a mathematical model | |
| 650 | 4 | |a numerical simulation | |
| 650 | 4 | |a quorum sensing | |
| 700 | 1 | |a Kuttler, Christina |d 1973- |e VerfasserIn |0 (DE-588)122061705 |0 (DE-627)081712413 |0 (DE-576)293072272 |4 aut | |
| 773 | 0 | 8 | |i Enthalten in |t Applied Sciences |d Basel : MDPI, 2011 |g 6(2016), 5 |h Online-Ressource |w (DE-627)737287640 |w (DE-600)2704225-X |w (DE-576)379466716 |x 2076-3417 |7 nnas |a Mathematical modeling of bacteria communication in continuous cultures |
| 773 | 1 | 8 | |g volume:6 |g year:2016 |g number:5 |g extent:17 |a Mathematical modeling of bacteria communication in continuous cultures |
| 856 | 4 | 0 | |u http://dx.doi.org/10.3390/app6050149 |x Verlag |x Resolving-System |z kostenfrei |3 Volltext |
| 856 | 4 | 0 | |u http://www.mdpi.com/2076-3417/6/5/149 |x Verlag |z kostenfrei |3 Volltext |
| 951 | |a AR | ||
| 992 | |a 20170726 | ||
| 993 | |a Article | ||
| 994 | |a 2016 | ||
| 998 | |g 1036989054 |a Barbarossa, Maria Vittoria |m 1036989054:Barbarossa, Maria Vittoria |d 110000 |d 110200 |d 110000 |d 110400 |e 110000PB1036989054 |e 110200PB1036989054 |e 110000PB1036989054 |e 110400PB1036989054 |k 0/110000/ |k 1/110000/110200/ |k 0/110000/ |k 1/110000/110400/ |p 1 |x j | ||
| 999 | |a KXP-PPN1561219827 |e 2975214847 | ||
| BIB | |a Y | ||
| SER | |a journal | ||
| JSO | |a {"origin":[{"dateIssuedKey":"2016","dateIssuedDisp":"16 May 2016"}],"id":{"doi":["10.3390/app6050149"],"eki":["1561219827"]},"name":{"displayForm":["Maria Vittoria Barbarossa, Christina Kuttler"]},"physDesc":[{"extent":"17 S."}],"relHost":[{"type":{"media":"Online-Ressource","bibl":"periodical"},"note":["Gesehen am 19.02.13"],"disp":"Mathematical modeling of bacteria communication in continuous culturesApplied Sciences","language":["eng"],"recId":"737287640","pubHistory":["1.2011 -"],"part":{"extent":"17","text":"6(2016), 5","volume":"6","issue":"5","year":"2016"},"title":[{"subtitle":"open access journal","title":"Applied Sciences","title_sort":"Applied Sciences"}],"physDesc":[{"extent":"Online-Ressource"}],"origin":[{"dateIssuedDisp":"2011-","publisher":"MDPI","dateIssuedKey":"2011","publisherPlace":"Basel"}],"id":{"zdb":["2704225-X"],"eki":["737287640"],"issn":["2076-3417"]}}],"title":[{"title_sort":"Mathematical modeling of bacteria communication in continuous cultures","title":"Mathematical modeling of bacteria communication in continuous cultures"}],"person":[{"family":"Barbarossa","given":"Maria Vittoria","display":"Barbarossa, Maria Vittoria","roleDisplay":"VerfasserIn","role":"aut"},{"family":"Kuttler","given":"Christina","roleDisplay":"VerfasserIn","display":"Kuttler, Christina","role":"aut"}],"note":["Gesehen am 26.07.2017"],"type":{"bibl":"article-journal","media":"Online-Ressource"},"recId":"1561219827","language":["eng"]} | ||
| SRT | |a BARBAROSSAMATHEMATIC1620 | ||