Quantum correlations for the metric
We discuss the correlation function for the metric for homogeneous and isotropic cosmologies. The exact propagator equation determines the correlation function as the inverse of the second functional derivative of the quantum effective action. This formulation relates the metric correlation function...
Saved in:
| Main Author: | |
|---|---|
| Format: | Article (Journal) |
| Language: | English |
| Published: |
20 June 2017
|
| In: |
Physical review
Year: 2017, Volume: 95, Issue: 12, Pages: 123525 |
| ISSN: | 2470-0029 |
| DOI: | 10.1103/PhysRevD.95.123525 |
| Online Access: | Verlag, Volltext: http://dx.doi.org/10.1103/PhysRevD.95.123525 Verlag, Volltext: https://link.aps.org/doi/10.1103/PhysRevD.95.123525 |
| Author Notes: | C. Wetterich |
MARC
| LEADER | 00000caa a2200000 c 4500 | ||
|---|---|---|---|
| 001 | 1561254045 | ||
| 003 | DE-627 | ||
| 005 | 20220813203215.0 | ||
| 007 | cr uuu---uuuuu | ||
| 008 | 170727s2017 xx |||||o 00| ||eng c | ||
| 024 | 7 | |a 10.1103/PhysRevD.95.123525 |2 doi | |
| 035 | |a (DE-627)1561254045 | ||
| 035 | |a (DE-576)491254040 | ||
| 035 | |a (DE-599)BSZ491254040 | ||
| 035 | |a (OCoLC)1340977921 | ||
| 040 | |a DE-627 |b ger |c DE-627 |e rda | ||
| 041 | |a eng | ||
| 084 | |a 29 |2 sdnb | ||
| 100 | 1 | |a Wetterich, Christof |d 1952- |e VerfasserIn |0 (DE-588)109400070 |0 (DE-627)683447629 |0 (DE-576)356552608 |4 aut | |
| 245 | 1 | 0 | |a Quantum correlations for the metric |c C. Wetterich |
| 264 | 1 | |c 20 June 2017 | |
| 300 | |a 49 | ||
| 336 | |a Text |b txt |2 rdacontent | ||
| 337 | |a Computermedien |b c |2 rdamedia | ||
| 338 | |a Online-Ressource |b cr |2 rdacarrier | ||
| 500 | |a Gesehen am 27.07.2017 | ||
| 520 | |a We discuss the correlation function for the metric for homogeneous and isotropic cosmologies. The exact propagator equation determines the correlation function as the inverse of the second functional derivative of the quantum effective action. This formulation relates the metric correlation function employed in quantum gravity computations to cosmological observables as the graviton power spectrum. In the Einstein-Hilbert approximation for the effective action the on-shell graviton correlation function can be obtained equivalently from a product of mode functions which are solutions of the linearized Einstein equations. In contrast, the product of mode functions, often employed in the context of cosmology, does not yield the correlation function for the vector and scalar components of the metric fluctuations. We divide the metric fluctuations into “physical fluctuations,” which couple to a conserved energy momentum tensor, and gauge fluctuations. On the subspace of physical metric fluctuations the relation to physical sources becomes invertible, such that the effective action and its relation to correlation functions no longer needs to involve a gauge fixing term. The physical metric fluctuations have a similar status as the Bardeen potentials, while being formulated in a covariant way. We compute the effective action for the physical metric fluctuations for geometries corresponding to realistic cosmologies. | ||
| 773 | 0 | 8 | |i Enthalten in |t Physical review |d Ridge, NY : American Physical Society, 2016 |g 95(2017,12) Artikel-Nummer 123525, 49 Seiten |h Online-Ressource |w (DE-627)846313510 |w (DE-600)2844732-3 |w (DE-576)454495811 |x 2470-0029 |7 nnas |a Quantum correlations for the metric |
| 773 | 1 | 8 | |g volume:95 |g year:2017 |g number:12 |g pages:123525 |g extent:49 |a Quantum correlations for the metric |
| 856 | 4 | 0 | |u http://dx.doi.org/10.1103/PhysRevD.95.123525 |x Verlag |x Resolving-System |3 Volltext |
| 856 | 4 | 0 | |u https://link.aps.org/doi/10.1103/PhysRevD.95.123525 |x Verlag |3 Volltext |
| 951 | |a AR | ||
| 992 | |a 20170727 | ||
| 993 | |a Article | ||
| 994 | |a 2017 | ||
| 998 | |g 109400070 |a Wetterich, Christof |m 109400070:Wetterich, Christof |d 130000 |d 130300 |e 130000PW109400070 |e 130300PW109400070 |k 0/130000/ |k 1/130000/130300/ |p 1 |x j |y j | ||
| 999 | |a KXP-PPN1561254045 |e 2975293127 | ||
| BIB | |a Y | ||
| SER | |a journal | ||
| JSO | |a {"language":["eng"],"recId":"1561254045","note":["Gesehen am 27.07.2017"],"type":{"bibl":"article-journal","media":"Online-Ressource"},"title":[{"title":"Quantum correlations for the metric","title_sort":"Quantum correlations for the metric"}],"person":[{"given":"Christof","family":"Wetterich","role":"aut","display":"Wetterich, Christof","roleDisplay":"VerfasserIn"}],"relHost":[{"title":[{"title":"Physical review","title_sort":"Physical review"}],"part":{"pages":"123525","issue":"12","year":"2017","extent":"49","volume":"95","text":"95(2017,12) Artikel-Nummer 123525, 49 Seiten"},"titleAlt":[{"title":"Particles, fields, gravitation, and cosmology"}],"pubHistory":["3rd series, volume 93, number 1 (January 2016)-"],"corporate":[{"role":"isb","display":"American Physical Society","roleDisplay":"Herausgebendes Organ"}],"language":["eng"],"recId":"846313510","note":["Gesehen am 14.03.2023"],"disp":"Quantum correlations for the metricPhysical review","type":{"bibl":"periodical","media":"Online-Ressource"},"id":{"issn":["2470-0029"],"zdb":["2844732-3"],"eki":["846313510"]},"origin":[{"publisherPlace":"Ridge, NY","dateIssuedDisp":"2016-","publisher":"American Physical Society","dateIssuedKey":"2016"}],"name":{"displayForm":["published by American Physical Society"]},"physDesc":[{"extent":"Online-Ressource"}]}],"physDesc":[{"extent":"49 S."}],"id":{"eki":["1561254045"],"doi":["10.1103/PhysRevD.95.123525"]},"origin":[{"dateIssuedKey":"2017","dateIssuedDisp":"20 June 2017"}],"name":{"displayForm":["C. Wetterich"]}} | ||
| SRT | |a WETTERICHCQUANTUMCOR2020 | ||