Robust detection and segmentation of cell nuclei in biomedical images based on a computational topology framework

The segmentation of cell nuclei is an important step towards the automated analysis of histological images. The presence of a large number of nuclei in whole-slide images necessitates methods that are computationally tractable in addition to being effective. In this work, a method is developed for t...

Full description

Saved in:
Bibliographic Details
Main Authors: Rojas-Moraleda, Rodrigo (Author) , Xiong, Wei (Author) , Halama, Niels (Author) , Breitkopf-Heinlein, Katja (Author) , Dooley, Steven (Author) , Heermann, Dieter W. (Author) , Valous, Nektarios A. (Author)
Format: Article (Journal)
Language:English
Published: 6 March 2017
In: Medical image analysis
Year: 2017, Volume: 38, Pages: 90-103
ISSN:1361-8423
DOI:10.1016/j.media.2017.02.009
Online Access:Verlag, Volltext: http://dx.doi.org/10.1016/j.media.2017.02.009
Verlag, Volltext: http://www.sciencedirect.com/science/article/pii/S1361841517300361
Get full text
Author Notes:Rodrigo Rojas-Moraleda, Wei Xiong, Niels Halama, Katja Breitkopf-Heinlein, Steven Dooley, Luis Salinas, Dieter W. Heermann, Nektarios A. Valous

MARC

LEADER 00000caa a2200000 c 4500
001 1561670804
003 DE-627
005 20230427122022.0
007 cr uuu---uuuuu
008 170803s2017 xx |||||o 00| ||eng c
024 7 |a 10.1016/j.media.2017.02.009  |2 doi 
035 |a (DE-627)1561670804 
035 |a (DE-576)49167080X 
035 |a (DE-599)BSZ49167080X 
035 |a (OCoLC)1340978041 
040 |a DE-627  |b ger  |c DE-627  |e rda 
041 |a eng 
084 |a 29  |2 sdnb 
100 1 |a Rojas-Moraleda, Rodrigo  |e VerfasserIn  |0 (DE-588)1137632224  |0 (DE-627)894989774  |0 (DE-576)491668759  |4 aut 
245 1 0 |a Robust detection and segmentation of cell nuclei in biomedical images based on a computational topology framework  |c Rodrigo Rojas-Moraleda, Wei Xiong, Niels Halama, Katja Breitkopf-Heinlein, Steven Dooley, Luis Salinas, Dieter W. Heermann, Nektarios A. Valous 
264 1 |c 6 March 2017 
300 |a 14 
336 |a Text  |b txt  |2 rdacontent 
337 |a Computermedien  |b c  |2 rdamedia 
338 |a Online-Ressource  |b cr  |2 rdacarrier 
500 |a Gesehen am 03.08.2017 
520 |a The segmentation of cell nuclei is an important step towards the automated analysis of histological images. The presence of a large number of nuclei in whole-slide images necessitates methods that are computationally tractable in addition to being effective. In this work, a method is developed for the robust segmentation of cell nuclei in histological images based on the principles of persistent homology. More specifically, an abstract simplicial homology approach for image segmentation is established. Essentially, the approach deals with the persistence of disconnected sets in the image, thus identifying salient regions that express patterns of persistence. By introducing an image representation based on topological features, the task of segmentation is less dependent on variations of color or texture. This results in a novel approach that generalizes well and provides stable performance. The method conceptualizes regions of interest (cell nuclei) pertinent to their topological features in a successful manner. The time cost of the proposed approach is lower-bounded by an almost linear behavior and upper-bounded by O(n2) in a worst-case scenario. Time complexity matches a quasilinear behavior which is O(n1+ɛ) for ε < 1. Images acquired from histological sections of liver tissue are used as a case study to demonstrate the effectiveness of the approach. The histological landscape consists of hepatocytes and non-parenchymal cells. The accuracy of the proposed methodology is verified against an automated workflow created by the output of a conventional filter bank (validated by experts) and the supervised training of a random forest classifier. The results are obtained on a per-object basis. The proposed workflow successfully detected both hepatocyte and non-parenchymal cell nuclei with an accuracy of 84.6%, and hepatocyte cell nuclei only with an accuracy of 86.2%. A public histological dataset with supplied ground-truth data is also used for evaluating the performance of the proposed approach (accuracy: 94.5%). Further validations are carried out with a publicly available dataset and ground-truth data from the Gland Segmentation in Colon Histology Images Challenge (GlaS) contest. The proposed method is useful for obtaining unsupervised robust initial segmentations that can be further integrated in image/data processing and management pipelines. The development of a fully automated system supporting a human expert provides tangible benefits in the context of clinical decision-making. 
650 4 |a Cell nuclei 
650 4 |a Computational topology 
650 4 |a Image segmentation 
650 4 |a Persistent homology 
700 1 |a Xiong, Wei  |e VerfasserIn  |0 (DE-588)1137632615  |0 (DE-627)894990659  |0 (DE-576)49166981X  |4 aut 
700 1 |a Halama, Niels  |d 1977-  |e VerfasserIn  |0 (DE-588)13087325X  |0 (DE-627)507228723  |0 (DE-576)251045706  |4 aut 
700 1 |a Breitkopf-Heinlein, Katja  |d 1971-  |e VerfasserIn  |0 (DE-588)122473833  |0 (DE-627)705922375  |0 (DE-576)293287589  |4 aut 
700 1 |a Dooley, Steven  |d 1960-  |e VerfasserIn  |0 (DE-588)1028589190  |0 (DE-627)73128951X  |0 (DE-576)376074116  |4 aut 
700 1 |a Heermann, Dieter W.  |d 1955-  |e VerfasserIn  |0 (DE-588)115452974  |0 (DE-627)077261038  |0 (DE-576)289891256  |4 aut 
700 1 |a Valous, Nektarios A.  |e VerfasserIn  |0 (DE-588)113763295X  |0 (DE-627)894991590  |0 (DE-576)491670508  |4 aut 
773 0 8 |i Enthalten in  |t Medical image analysis  |d Amsterdam [u.a.] : Elsevier Science, 1996  |g 38(2017), Seite 90-103  |h Online-Ressource  |w (DE-627)306365081  |w (DE-600)1497450-2  |w (DE-576)091204941  |x 1361-8423  |7 nnas  |a Robust detection and segmentation of cell nuclei in biomedical images based on a computational topology framework 
773 1 8 |g volume:38  |g year:2017  |g pages:90-103  |g extent:14  |a Robust detection and segmentation of cell nuclei in biomedical images based on a computational topology framework 
856 4 0 |u http://dx.doi.org/10.1016/j.media.2017.02.009  |x Verlag  |x Resolving-System  |3 Volltext 
856 4 0 |u http://www.sciencedirect.com/science/article/pii/S1361841517300361  |x Verlag  |3 Volltext 
951 |a AR 
992 |a 20170803 
993 |a Article 
994 |a 2017 
998 |g 1137632224  |a Rojas-Moraleda, Rodrigo  |m 1137632224:Rojas-Moraleda, Rodrigo  |p 1  |x j 
998 |g 113763295X  |a Valous, Nektarios A.  |m 113763295X:Valous, Nektarios A.  |p 8  |y j 
998 |g 115452974  |a Heermann, Dieter W.  |m 115452974:Heermann, Dieter W.  |d 130000  |d 130300  |e 130000PH115452974  |e 130300PH115452974  |k 0/130000/  |k 1/130000/130300/  |p 7 
998 |g 1028589190  |a Dooley, Steven  |m 1028589190:Dooley, Steven  |d 60000  |d 61100  |e 60000PD1028589190  |e 61100PD1028589190  |k 0/60000/  |k 1/60000/61100/  |p 5 
998 |g 122473833  |a Breitkopf-Heinlein, Katja  |m 122473833:Breitkopf-Heinlein, Katja  |d 60000  |d 61100  |e 60000PB122473833  |e 61100PB122473833  |k 0/60000/  |k 1/60000/61100/  |p 4 
998 |g 13087325X  |a Halama, Niels  |m 13087325X:Halama, Niels  |d 910000  |d 910100  |e 910000PH13087325X  |e 910100PH13087325X  |k 0/910000/  |k 1/910000/910100/  |p 3 
998 |g 1137632615  |a Xiong, Wei  |m 1137632615:Xiong, Wei  |d 130000  |d 130300  |e 130000PX1137632615  |e 130300PX1137632615  |k 0/130000/  |k 1/130000/130300/  |p 2 
999 |a KXP-PPN1561670804  |e 2976210675 
BIB |a Y 
SER |a journal 
JSO |a {"relHost":[{"part":{"extent":"14","volume":"38","pages":"90-103","text":"38(2017), Seite 90-103","year":"2017"},"title":[{"title":"Medical image analysis","title_sort":"Medical image analysis"}],"physDesc":[{"extent":"Online-Ressource"}],"type":{"media":"Online-Ressource","bibl":"periodical"},"id":{"issn":["1361-8423"],"zdb":["1497450-2"],"eki":["306365081"]},"recId":"306365081","origin":[{"dateIssuedDisp":"1996-","dateIssuedKey":"1996","publisherPlace":"Amsterdam [u.a.]","publisher":"Elsevier Science"}],"disp":"Robust detection and segmentation of cell nuclei in biomedical images based on a computational topology frameworkMedical image analysis","language":["eng"],"pubHistory":["1.1996/97 -"],"titleAlt":[{"title":"Medical image analysis online"}],"note":["Gesehen am 16.05.23"]}],"physDesc":[{"extent":"14 S."}],"title":[{"title":"Robust detection and segmentation of cell nuclei in biomedical images based on a computational topology framework","title_sort":"Robust detection and segmentation of cell nuclei in biomedical images based on a computational topology framework"}],"note":["Gesehen am 03.08.2017"],"language":["eng"],"person":[{"given":"Rodrigo","display":"Rojas-Moraleda, Rodrigo","family":"Rojas-Moraleda","role":"aut"},{"given":"Wei","role":"aut","family":"Xiong","display":"Xiong, Wei"},{"given":"Niels","family":"Halama","role":"aut","display":"Halama, Niels"},{"given":"Katja","family":"Breitkopf-Heinlein","role":"aut","display":"Breitkopf-Heinlein, Katja"},{"display":"Dooley, Steven","role":"aut","family":"Dooley","given":"Steven"},{"display":"Heermann, Dieter W.","family":"Heermann","role":"aut","given":"Dieter W."},{"display":"Valous, Nektarios A.","family":"Valous","role":"aut","given":"Nektarios A."}],"recId":"1561670804","id":{"doi":["10.1016/j.media.2017.02.009"],"eki":["1561670804"]},"type":{"bibl":"article-journal","media":"Online-Ressource"},"origin":[{"dateIssuedKey":"2017","dateIssuedDisp":"6 March 2017"}],"name":{"displayForm":["Rodrigo Rojas-Moraleda, Wei Xiong, Niels Halama, Katja Breitkopf-Heinlein, Steven Dooley, Luis Salinas, Dieter W. Heermann, Nektarios A. Valous"]}} 
SRT |a ROJASMORALROBUSTDETE6201