Combining machine-learning topic models and spatiotemporal analysis of social media data for disaster footprint and damage assessment

Current disaster management procedures to cope with human and economic losses and to manage a disaster’s aftermath suffer from a number of shortcomings like high temporal lags or limited temporal and spatial resolution. This paper presents an approach to analyze social media posts to assess the foot...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Resch, Bernd (VerfasserIn) , Usländer, Florian (VerfasserIn) , Havas, Clemens (VerfasserIn)
Dokumenttyp: Article (Journal)
Sprache:Englisch
Veröffentlicht: 03 Aug 2017
In: Cartography and geographic information science
Year: 2018, Jahrgang: 45, Heft: 4, Pages: 362-376
ISSN:1545-0465
DOI:10.1080/15230406.2017.1356242
Online-Zugang:Verlag, Volltext: http://dx.doi.org/10.1080/15230406.2017.1356242
Volltext
Verfasserangaben:Bernd Resch, Florian Usländer & Clemens Havas

MARC

LEADER 00000caa a2200000 c 4500
001 1561702706
003 DE-627
005 20250129113927.0
007 cr uuu---uuuuu
008 170803s2017 xx |||||o 00| ||eng c
024 7 |a 10.1080/15230406.2017.1356242  |2 doi 
035 |a (DE-627)1561702706 
035 |a (DE-576)491702701 
035 |a (DE-599)BSZ491702701 
035 |a (OCoLC)1340978106 
040 |a DE-627  |b ger  |c DE-627  |e rda 
041 |a eng 
084 |a 61  |2 sdnb 
100 1 |a Resch, Bernd  |e VerfasserIn  |0 (DE-588)1033522686  |0 (DE-627)741355140  |0 (DE-576)381140059  |4 aut 
245 1 0 |a Combining machine-learning topic models and spatiotemporal analysis of social media data for disaster footprint and damage assessment  |c Bernd Resch, Florian Usländer & Clemens Havas 
264 1 |c 03 Aug 2017 
300 |a 15 
336 |a Text  |b txt  |2 rdacontent 
337 |a Computermedien  |b c  |2 rdamedia 
338 |a Online-Ressource  |b cr  |2 rdacarrier 
500 |a Gesehen am 03.08.2017 
520 |a Current disaster management procedures to cope with human and economic losses and to manage a disaster’s aftermath suffer from a number of shortcomings like high temporal lags or limited temporal and spatial resolution. This paper presents an approach to analyze social media posts to assess the footprint of and the damage caused by natural disasters through combining machine-learning techniques (Latent Dirichlet Allocation) for semantic information extraction with spatial and temporal analysis (local spatial autocorrelation) for hot spot detection. Our results demonstrate that earthquake footprints can be reliably and accurately identified in our use case. More, a number of relevant semantic topics can be automatically identified without a priori knowledge, revealing clearly differing temporal and spatial signatures. Furthermore, we are able to generate a damage map that indicates where significant losses have occurred. The validation of our results using statistical measures, complemented by the official earthquake footprint by US Geological Survey and the results of the HAZUS loss model, shows that our approach produces valid and reliable outputs. Thus, our approach may improve current disaster management procedures through generating a new and unseen information layer in near real time. 
650 4 |a disaster management 
650 4 |a machine-learning 
650 4 |a semantic topic analysis 
650 4 |a Social media 
650 4 |a spatiotemporal analysis 
700 1 |a Usländer, Florian  |e VerfasserIn  |0 (DE-588)1137654473  |0 (DE-627)895029324  |0 (DE-576)491702671  |4 aut 
700 1 |a Havas, Clemens  |e VerfasserIn  |0 (DE-588)1137654538  |0 (DE-627)895029480  |0 (DE-576)49170268X  |4 aut 
773 0 8 |i Enthalten in  |t Cartography and geographic information science  |d Abingdon : Taylor & Francis, 1999  |g 45(2018), 4, Seite 362-376  |h Online-Ressource  |w (DE-627)365659282  |w (DE-600)2111978-8  |w (DE-576)285261851  |x 1545-0465  |7 nnas  |a Combining machine-learning topic models and spatiotemporal analysis of social media data for disaster footprint and damage assessment 
773 1 8 |g volume:45  |g year:2018  |g number:4  |g pages:362-376  |g extent:15  |a Combining machine-learning topic models and spatiotemporal analysis of social media data for disaster footprint and damage assessment 
856 4 0 |u http://dx.doi.org/10.1080/15230406.2017.1356242  |x Verlag  |x Resolving-System  |3 Volltext 
951 |a AR 
992 |a 20170803 
993 |a Article 
994 |a 2017 
998 |g 1033522686  |a Resch, Bernd  |m 1033522686:Resch, Bernd  |d 700000  |d 729400  |e 700000PR1033522686  |e 729400PR1033522686  |k 0/700000/  |k 1/700000/729400/  |p 1  |x j 
999 |a KXP-PPN1561702706  |e 2976256306 
BIB |a Y 
SER |a journal 
JSO |a {"recId":"1561702706","language":["eng"],"note":["Gesehen am 03.08.2017"],"type":{"media":"Online-Ressource","bibl":"article-journal"},"person":[{"display":"Resch, Bernd","roleDisplay":"VerfasserIn","role":"aut","family":"Resch","given":"Bernd"},{"given":"Florian","family":"Usländer","role":"aut","display":"Usländer, Florian","roleDisplay":"VerfasserIn"},{"given":"Clemens","family":"Havas","role":"aut","roleDisplay":"VerfasserIn","display":"Havas, Clemens"}],"title":[{"title_sort":"Combining machine-learning topic models and spatiotemporal analysis of social media data for disaster footprint and damage assessment","title":"Combining machine-learning topic models and spatiotemporal analysis of social media data for disaster footprint and damage assessment"}],"relHost":[{"physDesc":[{"extent":"Online-Ressource"}],"name":{"displayForm":["American Congress on Surveying and Mapping ; CaGIS, Cartography and Geographic Information Society"]},"origin":[{"dateIssuedDisp":"1999-","dateIssuedKey":"1999","publisher":"Taylor & Francis ; CaGIS","publisherPlace":"Abingdon ; Mt. Pleasant, SC"}],"id":{"issn":["1545-0465"],"eki":["365659282"],"zdb":["2111978-8"]},"note":["Gesehen am 25.06.2021"],"disp":"Combining machine-learning topic models and spatiotemporal analysis of social media data for disaster footprint and damage assessmentCartography and geographic information science","type":{"bibl":"periodical","media":"Online-Ressource"},"recId":"365659282","language":["eng"],"corporate":[{"role":"isb","display":"American Congress on Surveying and Mapping","roleDisplay":"Herausgebendes Organ"},{"role":"isb","display":"Cartography and Geographic Information Society","roleDisplay":"Herausgebendes Organ"}],"pubHistory":["26.1999 -"],"part":{"year":"2018","issue":"4","pages":"362-376","volume":"45","text":"45(2018), 4, Seite 362-376","extent":"15"},"title":[{"title":"Cartography and geographic information science","title_sort":"Cartography and geographic information science"}]}],"physDesc":[{"extent":"15 S."}],"name":{"displayForm":["Bernd Resch, Florian Usländer & Clemens Havas"]},"id":{"eki":["1561702706"],"doi":["10.1080/15230406.2017.1356242"]},"origin":[{"dateIssuedKey":"2017","dateIssuedDisp":"03 Aug 2017"}]} 
SRT |a RESCHBERNDCOMBININGM0320