Deep-learned top tagging with a Lorentz layer

We introduce a new and highly efficient tagger for hadronically decaying top quarks, based on a deep neural network working with Lorentz vectors and the Minkowski metric. With its novel machine learning setup and architecture it allows us to identify boosted top quarks not only from calorimeter towe...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Butter, Anja (VerfasserIn) , Kasieczka, Gregor (VerfasserIn) , Plehn, Tilman (VerfasserIn) , Russell, Michael (VerfasserIn)
Dokumenttyp: Article (Journal) Kapitel/Artikel
Sprache:Englisch
Veröffentlicht: 27 Jul 2017
In: Arxiv

Online-Zugang:Verlag, kostenfrei, Volltext: http://arxiv.org/abs/1707.08966
Volltext
Verfasserangaben:Anja Butter, Gregor Kasieczka, Tilman Plehn, and Michael Russell
Beschreibung
Zusammenfassung:We introduce a new and highly efficient tagger for hadronically decaying top quarks, based on a deep neural network working with Lorentz vectors and the Minkowski metric. With its novel machine learning setup and architecture it allows us to identify boosted top quarks not only from calorimeter towers, but also including tracking information. We show how the performance of our tagger compares with QCD-inspired and image-recognition approaches and find that it significantly increases the performance for strongly boosted top quarks.
Beschreibung:Identifizierung der Ressource nach: Last revised 23 Apr 2018
Gesehen am 01.12.2020
Beschreibung:Online Resource