Stochastic inference with spiking neurons in the high-conductance state

The highly variable dynamics of neocortical circuits observed in vivo have been hypothesized to represent a signature of ongoing stochastic inference but stand in apparent contrast to the deterministic response of neurons measured in vitro. Based on a propagation of the membrane autocorrelation acro...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Petrovici, Mihai A. (VerfasserIn) , Bill, Johannes (VerfasserIn) , Bytschok, Ilja (VerfasserIn) , Schemmel, Johannes (VerfasserIn) , Meier, Karlheinz (VerfasserIn)
Dokumenttyp: Article (Journal)
Sprache:Englisch
Veröffentlicht: 20 October 2016
In: Physical review
Year: 2016, Jahrgang: 94, Heft: 4
ISSN:2470-0053
DOI:10.1103/PhysRevE.94.042312
Online-Zugang:Verlag, Volltext: http://dx.doi.org/10.1103/PhysRevE.94.042312
Verlag, Volltext: https://link.aps.org/doi/10.1103/PhysRevE.94.042312
Volltext
Verfasserangaben:Mihai A. Petrovici, Johannes Bill, Ilja Bytschok, Johannes Schemmel, and Karlheinz Meier

MARC

LEADER 00000caa a2200000 c 4500
001 1562447858
003 DE-627
005 20220813212851.0
007 cr uuu---uuuuu
008 170815s2016 xx |||||o 00| ||eng c
024 7 |a 10.1103/PhysRevE.94.042312  |2 doi 
035 |a (DE-627)1562447858 
035 |a (DE-576)492447853 
035 |a (DE-599)BSZ492447853 
035 |a (OCoLC)1340978353 
040 |a DE-627  |b ger  |c DE-627  |e rda 
041 |a eng 
084 |a 29  |2 sdnb 
100 1 |a Petrovici, Mihai A.  |e VerfasserIn  |0 (DE-588)1072021005  |0 (DE-627)826788823  |0 (DE-576)433488700  |4 aut 
245 1 0 |a Stochastic inference with spiking neurons in the high-conductance state  |c Mihai A. Petrovici, Johannes Bill, Ilja Bytschok, Johannes Schemmel, and Karlheinz Meier 
264 1 |c 20 October 2016 
300 |a 14 
336 |a Text  |b txt  |2 rdacontent 
337 |a Computermedien  |b c  |2 rdamedia 
338 |a Online-Ressource  |b cr  |2 rdacarrier 
500 |a Gesehen am 15.08.2017 
520 |a The highly variable dynamics of neocortical circuits observed in vivo have been hypothesized to represent a signature of ongoing stochastic inference but stand in apparent contrast to the deterministic response of neurons measured in vitro. Based on a propagation of the membrane autocorrelation across spike bursts, we provide an analytical derivation of the neural activation function that holds for a large parameter space, including the high-conductance state. On this basis, we show how an ensemble of leaky integrate-and-fire neurons with conductance-based synapses embedded in a spiking environment can attain the correct firing statistics for sampling from a well-defined target distribution. For recurrent networks, we examine convergence toward stationarity in computer simulations and demonstrate sample-based Bayesian inference in a mixed graphical model. This points to a new computational role of high-conductance states and establishes a rigorous link between deterministic neuron models and functional stochastic dynamics on the network level. 
700 1 |a Bill, Johannes  |e VerfasserIn  |0 (DE-588)1138256773  |0 (DE-627)895583453  |0 (DE-576)492447241  |4 aut 
700 1 |a Bytschok, Ilja  |e VerfasserIn  |0 (DE-588)1072021145  |0 (DE-627)826788904  |0 (DE-576)433488778  |4 aut 
700 1 |a Schemmel, Johannes  |e VerfasserIn  |0 (DE-588)1025834607  |0 (DE-627)72488291X  |0 (DE-576)370821440  |4 aut 
700 1 |a Meier, Karlheinz  |d 1955-2018  |e VerfasserIn  |0 (DE-588)1025835115  |0 (DE-627)724884114  |0 (DE-576)370822269  |4 aut 
773 0 8 |i Enthalten in  |t Physical review  |d Woodbury, NY : Inst., 2016  |g 94(2016,4) Artikel-Nummer 042312, 14 Seiten  |h Online-Ressource  |w (DE-627)846123010  |w (DE-600)2844562-4  |w (DE-576)454423063  |x 2470-0053  |7 nnas  |a Stochastic inference with spiking neurons in the high-conductance state 
773 1 8 |g volume:94  |g year:2016  |g number:4  |g extent:14  |a Stochastic inference with spiking neurons in the high-conductance state 
856 4 0 |u http://dx.doi.org/10.1103/PhysRevE.94.042312  |x Verlag  |x Resolving-System  |3 Volltext 
856 4 0 |u https://link.aps.org/doi/10.1103/PhysRevE.94.042312  |x Verlag  |3 Volltext 
951 |a AR 
992 |a 20170815 
993 |a Article 
994 |a 2016 
998 |g 1025835115  |a Meier, Karlheinz  |m 1025835115:Meier, Karlheinz  |d 130000  |d 130700  |e 130000PM1025835115  |e 130700PM1025835115  |k 0/130000/  |k 1/130000/130700/  |p 5  |y j 
998 |g 1025834607  |a Schemmel, Johannes  |m 1025834607:Schemmel, Johannes  |d 130000  |d 130700  |e 130000PS1025834607  |e 130700PS1025834607  |k 0/130000/  |k 1/130000/130700/  |p 4 
998 |g 1072021145  |a Bytschok, Ilja  |m 1072021145:Bytschok, Ilja  |d 130000  |d 130700  |e 130000PB1072021145  |e 130700PB1072021145  |k 0/130000/  |k 1/130000/130700/  |p 3 
998 |g 1138256773  |a Bill, Johannes  |m 1138256773:Bill, Johannes  |d 130000  |d 130700  |e 130000PB1138256773  |e 130700PB1138256773  |k 0/130000/  |k 1/130000/130700/  |p 2 
998 |g 1072021005  |a Petrovici, Mihai A.  |m 1072021005:Petrovici, Mihai A.  |d 130000  |d 130700  |e 130000PP1072021005  |e 130700PP1072021005  |k 0/130000/  |k 1/130000/130700/  |p 1  |x j 
999 |a KXP-PPN1562447858  |e 2977782303 
BIB |a Y 
SER |a journal 
JSO |a {"origin":[{"dateIssuedKey":"2016","dateIssuedDisp":"20 October 2016"}],"name":{"displayForm":["Mihai A. Petrovici, Johannes Bill, Ilja Bytschok, Johannes Schemmel, and Karlheinz Meier"]},"recId":"1562447858","note":["Gesehen am 15.08.2017"],"type":{"media":"Online-Ressource","bibl":"article-journal"},"id":{"eki":["1562447858"],"doi":["10.1103/PhysRevE.94.042312"]},"physDesc":[{"extent":"14 S."}],"relHost":[{"language":["eng"],"physDesc":[{"extent":"Online-Ressource"}],"id":{"eki":["846123010"],"zdb":["2844562-4"],"issn":["2470-0053"]},"type":{"media":"Online-Ressource","bibl":"periodical"},"pubHistory":["Vol. 93, Iss. 1, January 2016-"],"title":[{"title_sort":"Physical review","title":"Physical review"}],"part":{"text":"94(2016,4) Artikel-Nummer 042312, 14 Seiten","issue":"4","year":"2016","extent":"14","volume":"94"},"titleAlt":[{"title":"Statistical, nonlinear, and soft matter physics"}],"name":{"displayForm":["publ. by The American Institute of Physics"]},"recId":"846123010","disp":"Stochastic inference with spiking neurons in the high-conductance statePhysical review","origin":[{"dateIssuedDisp":"January 2016-","publisher":"Inst.","publisherPlace":"Woodbury, NY"}],"corporate":[{"role":"isb","display":"American Institute of Physics"},{"display":"American Physical Society","role":"isb"}]}],"title":[{"title_sort":"Stochastic inference with spiking neurons in the high-conductance state","title":"Stochastic inference with spiking neurons in the high-conductance state"}],"person":[{"given":"Mihai A.","family":"Petrovici","role":"aut","display":"Petrovici, Mihai A."},{"family":"Bill","given":"Johannes","display":"Bill, Johannes","role":"aut"},{"family":"Bytschok","given":"Ilja","display":"Bytschok, Ilja","role":"aut"},{"family":"Schemmel","given":"Johannes","display":"Schemmel, Johannes","role":"aut"},{"family":"Meier","given":"Karlheinz","display":"Meier, Karlheinz","role":"aut"}],"language":["eng"]} 
SRT |a PETROVICIMSTOCHASTIC2020