Direct and indirect multiple shooting for parabolic optimal control problems

We present two multiple shooting approaches for optimal control problems (OCP) governed by parabolic partial differential equations (PDE). In the context of ordinary differential equations, shooting techniques have become a state-of-the-art solver component, whereas their application in the PDE case...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Carraro, Thomas (VerfasserIn) , Geiger, Michael (VerfasserIn)
Dokumenttyp: Kapitel/Artikel Konferenzschrift
Sprache:Englisch
Veröffentlicht: 2015
In: Multiple Shooting and Time Domain Decomposition Methods
Year: 2015, Pages: 35-67
Schlagworte:
Online-Zugang:Verlag, Volltext: https://link.springer.com/chapter/10.1007/978-3-319-23321-5_2
Verlag, Volltext: https://link.springer.com/chapter/10.1007/978-3-319-23321-5_2#Bib1
Verlag, Volltext: https://link.springer.com/content/pdf/10.1007%2F978-3-319-23321-5_2.pdf
Volltext
Verfasserangaben:Thomas Carraro, Michael Geiger
Beschreibung
Zusammenfassung:We present two multiple shooting approaches for optimal control problems (OCP) governed by parabolic partial differential equations (PDE). In the context of ordinary differential equations, shooting techniques have become a state-of-the-art solver component, whereas their application in the PDE case is still in an early phase of development. We derive both direct (DMS) and indirect (IMS) multiple shooting for PDE optimal control from the same extended problem formulation. This approach shows that they are algebraically equivalent on an abstract function space level. However, discussing their respective algorithmic realizations, we underline differences between DMS and IMS. In the numerical examples, we cover both linear and nonlinear parabolic side conditions.
Beschreibung:Gesehen am 04.09.2017
Beschreibung:Online Resource
ISBN:9783319233215