Approximation of the p-stokes equations with equal-order finite elements

Non-Newtonian fluid motions are often modeled by the p-Stokes equations with power-law exponent p∈(1,∞)p∈(1,∞){p\in(1,\infty)} . In the present paper we study the discretization of the p-Stokes equations with equal-order finite elements. We propose a stabilization scheme for the pressure-gradient ba...

Full description

Saved in:
Bibliographic Details
Main Author: Hirn, Adrian (Author)
Format: Article (Journal)
Language:English
Published: 2013
In: Journal of mathematical fluid mechanics
Year: 2012, Volume: 15, Issue: 1, Pages: 65-88
ISSN:1422-6952
DOI:10.1007/s00021-012-0095-0
Online Access:Verlag, Volltext: http://dx.doi.org/10.1007/s00021-012-0095-0
Verlag, Volltext: https://link.springer.com/content/pdf/10.1007%2Fs00021-012-0095-0.pdf
Verlag, Volltext: https://link.springer.com/article/10.1007/s00021-012-0095-0
Get full text
Author Notes:Adrian Hirn

MARC

LEADER 00000caa a2200000 c 4500
001 1563197871
003 DE-627
005 20220813221109.0
007 cr uuu---uuuuu
008 170905r20132012xx |||||o 00| ||eng c
024 7 |a 10.1007/s00021-012-0095-0  |2 doi 
035 |a (DE-627)1563197871 
035 |a (DE-576)493197877 
035 |a (DE-599)BSZ493197877 
035 |a (OCoLC)1340979097 
040 |a DE-627  |b ger  |c DE-627  |e rda 
041 |a eng 
084 |a 27  |2 sdnb 
100 1 |a Hirn, Adrian  |e VerfasserIn  |0 (DE-588)1022361724  |0 (DE-627)716960087  |0 (DE-576)365277975  |4 aut 
245 1 0 |a Approximation of the p-stokes equations with equal-order finite elements  |c Adrian Hirn 
264 1 |c 2013 
300 |a 24 
336 |a Text  |b txt  |2 rdacontent 
337 |a Computermedien  |b c  |2 rdamedia 
338 |a Online-Ressource  |b cr  |2 rdacarrier 
500 |a First online 01 May 2012 
500 |a Gesehen am 05.09.2017 
520 |a Non-Newtonian fluid motions are often modeled by the p-Stokes equations with power-law exponent p∈(1,∞)p∈(1,∞){p\in(1,\infty)} . In the present paper we study the discretization of the p-Stokes equations with equal-order finite elements. We propose a stabilization scheme for the pressure-gradient based on local projections. For p∈(1,∞)p∈(1,∞){p\in(1,\infty)} the well-posedness of the discrete problems is shown and a priori error estimates are proven. For p∈(1,2]p∈(1,2]{p\in(1,2]} the derived a priori error estimates provide optimal rates of convergence with respect to the supposed regularity of the solution. The achieved results are illustrated by numerical experiments. 
534 |c 2012 
773 0 8 |i Enthalten in  |t Journal of mathematical fluid mechanics  |d Cham (ZG) : Springer International Publishing AG, 1999  |g 15(2013), 1, Seite 65-88  |h Online-Ressource  |w (DE-627)303613335  |w (DE-600)1495383-3  |w (DE-576)080887392  |x 1422-6952  |7 nnas  |a Approximation of the p-stokes equations with equal-order finite elements 
773 1 8 |g volume:15  |g year:2013  |g number:1  |g pages:65-88  |g extent:24  |a Approximation of the p-stokes equations with equal-order finite elements 
856 4 0 |u http://dx.doi.org/10.1007/s00021-012-0095-0  |x Verlag  |x Resolving-System  |3 Volltext 
856 4 0 |u https://link.springer.com/content/pdf/10.1007%2Fs00021-012-0095-0.pdf  |x Verlag  |3 Volltext 
856 4 0 |u https://link.springer.com/article/10.1007/s00021-012-0095-0  |x Verlag  |3 Volltext 
951 |a AR 
992 |a 20170905 
993 |a Article 
994 |a 2013 
998 |g 1022361724  |a Hirn, Adrian  |m 1022361724:Hirn, Adrian  |d 110000  |d 110200  |d 110000  |d 110400  |e 110000PH1022361724  |e 110200PH1022361724  |e 110000PH1022361724  |e 110400PH1022361724  |k 0/110000/  |k 1/110000/110200/  |k 0/110000/  |k 1/110000/110400/  |p 1  |x j  |y j 
999 |a KXP-PPN1563197871  |e 2979649554 
BIB |a Y 
SER |a journal 
JSO |a {"name":{"displayForm":["Adrian Hirn"]},"id":{"eki":["1563197871"],"doi":["10.1007/s00021-012-0095-0"]},"origin":[{"dateIssuedDisp":"2013","dateIssuedKey":"2013"}],"relHost":[{"physDesc":[{"extent":"Online-Ressource"}],"id":{"issn":["1422-6952"],"eki":["303613335"],"zdb":["1495383-3"]},"origin":[{"publisherPlace":"Cham (ZG) ; Basel ; Basel","dateIssuedDisp":"1999-","dateIssuedKey":"1999","publisher":"Springer International Publishing AG ; Birkhäuser ; Springer Basel AG"}],"titleAlt":[{"title":"JMFM"}],"part":{"pages":"65-88","issue":"1","year":"2013","extent":"24","volume":"15","text":"15(2013), 1, Seite 65-88"},"pubHistory":["1.1999 -"],"language":["ger"],"recId":"303613335","disp":"Approximation of the p-stokes equations with equal-order finite elementsJournal of mathematical fluid mechanics","note":["Gesehen am 05.10.20"],"type":{"media":"Online-Ressource","bibl":"periodical"},"title":[{"title":"Journal of mathematical fluid mechanics","subtitle":"JMFM","title_sort":"Journal of mathematical fluid mechanics"}]}],"physDesc":[{"extent":"24 S."}],"person":[{"role":"aut","display":"Hirn, Adrian","roleDisplay":"VerfasserIn","given":"Adrian","family":"Hirn"}],"title":[{"title_sort":"Approximation of the p-stokes equations with equal-order finite elements","title":"Approximation of the p-stokes equations with equal-order finite elements"}],"language":["eng"],"recId":"1563197871","note":["First online 01 May 2012","Gesehen am 05.09.2017"],"type":{"media":"Online-Ressource","bibl":"article-journal"}} 
SRT |a HIRNADRIANAPPROXIMAT2013