Approximation of the p-stokes equations with equal-order finite elements
Non-Newtonian fluid motions are often modeled by the p-Stokes equations with power-law exponent p∈(1,∞)p∈(1,∞){p\in(1,\infty)} . In the present paper we study the discretization of the p-Stokes equations with equal-order finite elements. We propose a stabilization scheme for the pressure-gradient ba...
Saved in:
| Main Author: | |
|---|---|
| Format: | Article (Journal) |
| Language: | English |
| Published: |
2013
|
| In: |
Journal of mathematical fluid mechanics
Year: 2012, Volume: 15, Issue: 1, Pages: 65-88 |
| ISSN: | 1422-6952 |
| DOI: | 10.1007/s00021-012-0095-0 |
| Online Access: | Verlag, Volltext: http://dx.doi.org/10.1007/s00021-012-0095-0 Verlag, Volltext: https://link.springer.com/content/pdf/10.1007%2Fs00021-012-0095-0.pdf Verlag, Volltext: https://link.springer.com/article/10.1007/s00021-012-0095-0 |
| Author Notes: | Adrian Hirn |
MARC
| LEADER | 00000caa a2200000 c 4500 | ||
|---|---|---|---|
| 001 | 1563197871 | ||
| 003 | DE-627 | ||
| 005 | 20220813221109.0 | ||
| 007 | cr uuu---uuuuu | ||
| 008 | 170905r20132012xx |||||o 00| ||eng c | ||
| 024 | 7 | |a 10.1007/s00021-012-0095-0 |2 doi | |
| 035 | |a (DE-627)1563197871 | ||
| 035 | |a (DE-576)493197877 | ||
| 035 | |a (DE-599)BSZ493197877 | ||
| 035 | |a (OCoLC)1340979097 | ||
| 040 | |a DE-627 |b ger |c DE-627 |e rda | ||
| 041 | |a eng | ||
| 084 | |a 27 |2 sdnb | ||
| 100 | 1 | |a Hirn, Adrian |e VerfasserIn |0 (DE-588)1022361724 |0 (DE-627)716960087 |0 (DE-576)365277975 |4 aut | |
| 245 | 1 | 0 | |a Approximation of the p-stokes equations with equal-order finite elements |c Adrian Hirn |
| 264 | 1 | |c 2013 | |
| 300 | |a 24 | ||
| 336 | |a Text |b txt |2 rdacontent | ||
| 337 | |a Computermedien |b c |2 rdamedia | ||
| 338 | |a Online-Ressource |b cr |2 rdacarrier | ||
| 500 | |a First online 01 May 2012 | ||
| 500 | |a Gesehen am 05.09.2017 | ||
| 520 | |a Non-Newtonian fluid motions are often modeled by the p-Stokes equations with power-law exponent p∈(1,∞)p∈(1,∞){p\in(1,\infty)} . In the present paper we study the discretization of the p-Stokes equations with equal-order finite elements. We propose a stabilization scheme for the pressure-gradient based on local projections. For p∈(1,∞)p∈(1,∞){p\in(1,\infty)} the well-posedness of the discrete problems is shown and a priori error estimates are proven. For p∈(1,2]p∈(1,2]{p\in(1,2]} the derived a priori error estimates provide optimal rates of convergence with respect to the supposed regularity of the solution. The achieved results are illustrated by numerical experiments. | ||
| 534 | |c 2012 | ||
| 773 | 0 | 8 | |i Enthalten in |t Journal of mathematical fluid mechanics |d Cham (ZG) : Springer International Publishing AG, 1999 |g 15(2013), 1, Seite 65-88 |h Online-Ressource |w (DE-627)303613335 |w (DE-600)1495383-3 |w (DE-576)080887392 |x 1422-6952 |7 nnas |a Approximation of the p-stokes equations with equal-order finite elements |
| 773 | 1 | 8 | |g volume:15 |g year:2013 |g number:1 |g pages:65-88 |g extent:24 |a Approximation of the p-stokes equations with equal-order finite elements |
| 856 | 4 | 0 | |u http://dx.doi.org/10.1007/s00021-012-0095-0 |x Verlag |x Resolving-System |3 Volltext |
| 856 | 4 | 0 | |u https://link.springer.com/content/pdf/10.1007%2Fs00021-012-0095-0.pdf |x Verlag |3 Volltext |
| 856 | 4 | 0 | |u https://link.springer.com/article/10.1007/s00021-012-0095-0 |x Verlag |3 Volltext |
| 951 | |a AR | ||
| 992 | |a 20170905 | ||
| 993 | |a Article | ||
| 994 | |a 2013 | ||
| 998 | |g 1022361724 |a Hirn, Adrian |m 1022361724:Hirn, Adrian |d 110000 |d 110200 |d 110000 |d 110400 |e 110000PH1022361724 |e 110200PH1022361724 |e 110000PH1022361724 |e 110400PH1022361724 |k 0/110000/ |k 1/110000/110200/ |k 0/110000/ |k 1/110000/110400/ |p 1 |x j |y j | ||
| 999 | |a KXP-PPN1563197871 |e 2979649554 | ||
| BIB | |a Y | ||
| SER | |a journal | ||
| JSO | |a {"name":{"displayForm":["Adrian Hirn"]},"id":{"eki":["1563197871"],"doi":["10.1007/s00021-012-0095-0"]},"origin":[{"dateIssuedDisp":"2013","dateIssuedKey":"2013"}],"relHost":[{"physDesc":[{"extent":"Online-Ressource"}],"id":{"issn":["1422-6952"],"eki":["303613335"],"zdb":["1495383-3"]},"origin":[{"publisherPlace":"Cham (ZG) ; Basel ; Basel","dateIssuedDisp":"1999-","dateIssuedKey":"1999","publisher":"Springer International Publishing AG ; Birkhäuser ; Springer Basel AG"}],"titleAlt":[{"title":"JMFM"}],"part":{"pages":"65-88","issue":"1","year":"2013","extent":"24","volume":"15","text":"15(2013), 1, Seite 65-88"},"pubHistory":["1.1999 -"],"language":["ger"],"recId":"303613335","disp":"Approximation of the p-stokes equations with equal-order finite elementsJournal of mathematical fluid mechanics","note":["Gesehen am 05.10.20"],"type":{"media":"Online-Ressource","bibl":"periodical"},"title":[{"title":"Journal of mathematical fluid mechanics","subtitle":"JMFM","title_sort":"Journal of mathematical fluid mechanics"}]}],"physDesc":[{"extent":"24 S."}],"person":[{"role":"aut","display":"Hirn, Adrian","roleDisplay":"VerfasserIn","given":"Adrian","family":"Hirn"}],"title":[{"title_sort":"Approximation of the p-stokes equations with equal-order finite elements","title":"Approximation of the p-stokes equations with equal-order finite elements"}],"language":["eng"],"recId":"1563197871","note":["First online 01 May 2012","Gesehen am 05.09.2017"],"type":{"media":"Online-Ressource","bibl":"article-journal"}} | ||
| SRT | |a HIRNADRIANAPPROXIMAT2013 | ||