Evolution of linear perturbations in Lema\^itre-Tolman-Bondi void models
We study the evolution of linear perturbations in a Lema\^itre-Tolman-Bondi (LTB) void model with realistic cosmological initial conditions. Linear perturbation theory in LTB models is substantially more complicated than in standard Friedmann universes as the inhomogeneous background causes gauge-in...
Gespeichert in:
| Hauptverfasser: | , , |
|---|---|
| Dokumenttyp: | Article (Journal) Kapitel/Artikel |
| Sprache: | Englisch |
| Veröffentlicht: |
27 Mar 2015
|
| In: |
Arxiv
|
| Online-Zugang: | Verlag, Volltext: http://arxiv.org/abs/1412.3012 |
| Verfasserangaben: | Sven Meyer, Matthias Redlich, Matthias Bartelmann |
MARC
| LEADER | 00000caa a2200000 c 4500 | ||
|---|---|---|---|
| 001 | 1563608561 | ||
| 003 | DE-627 | ||
| 005 | 20220813224403.0 | ||
| 007 | cr uuu---uuuuu | ||
| 008 | 170919s2015 xx |||||o 00| ||eng c | ||
| 035 | |a (DE-627)1563608561 | ||
| 035 | |a (DE-576)493608567 | ||
| 035 | |a (DE-599)BSZ493608567 | ||
| 035 | |a (OCoLC)1340979242 | ||
| 040 | |a DE-627 |b ger |c DE-627 |e rda | ||
| 041 | |a eng | ||
| 084 | |a 29 |2 sdnb | ||
| 100 | 1 | |a Meyer, Sven |e VerfasserIn |0 (DE-588)1073662373 |0 (DE-627)829316396 |0 (DE-576)43524230X |4 aut | |
| 245 | 1 | 0 | |a Evolution of linear perturbations in Lema\^itre-Tolman-Bondi void models |c Sven Meyer, Matthias Redlich, Matthias Bartelmann |
| 264 | 1 | |c 27 Mar 2015 | |
| 300 | |a 39 | ||
| 336 | |a Text |b txt |2 rdacontent | ||
| 337 | |a Computermedien |b c |2 rdamedia | ||
| 338 | |a Online-Ressource |b cr |2 rdacarrier | ||
| 500 | |a Gesehen am 29.09.2017 | ||
| 520 | |a We study the evolution of linear perturbations in a Lema\^itre-Tolman-Bondi (LTB) void model with realistic cosmological initial conditions. Linear perturbation theory in LTB models is substantially more complicated than in standard Friedmann universes as the inhomogeneous background causes gauge-invariant perturbations to couple at first order. As shown by Clarkson et al. (2009), the evolution is constrained by a system of linear partial differential equations which need to be integrated numerically. We present a new numerical scheme using finite element methods to solve this equation system and generate scalar initial conditions based on Gaussian random fields with an underlying power spectrum for the Bardeen potential. After spherical harmonic decomposition, the initial fluctuations are propagated in time and estimates of angular power spectra of each gauge invariant variable are computed as functions of redshift. This allows to analyse the coupling strength in a statistical way. We find significant couplings up to $25\%$ for large and deep voids of Gpc scale as required to fit the distance redshift relations of SNe. | ||
| 650 | 4 | |a Astrophysics - Cosmology and Nongalactic Astrophysics | |
| 650 | 4 | |a General Relativity and Quantum Cosmology | |
| 700 | 1 | |a Redlich, Matthias |e VerfasserIn |0 (DE-588)1064723845 |0 (DE-627)815502672 |0 (DE-576)424092328 |4 aut | |
| 700 | 1 | |a Bartelmann, Matthias |d 1965- |e VerfasserIn |0 (DE-588)141554185 |0 (DE-627)629953090 |0 (DE-576)170611779 |4 aut | |
| 773 | 0 | 8 | |i Enthalten in |t Arxiv |d Ithaca, NY : Cornell University, 1991 |g (2015) Artikel-Nummer 1412.3012, 39 Seiten |h Online-Ressource |w (DE-627)509006531 |w (DE-600)2225896-6 |w (DE-576)28130436X |7 nnas |a Evolution of linear perturbations in Lema\^itre-Tolman-Bondi void models |
| 773 | 1 | 8 | |g year:2015 |g extent:39 |a Evolution of linear perturbations in Lema\^itre-Tolman-Bondi void models |
| 856 | 4 | 0 | |u http://arxiv.org/abs/1412.3012 |x Verlag |3 Volltext |
| 951 | |a AR | ||
| 992 | |a 20170919 | ||
| 993 | |a Article | ||
| 998 | |g 141554185 |a Bartelmann, Matthias |m 141554185:Bartelmann, Matthias |d 700000 |d 714000 |d 714200 |e 700000PB141554185 |e 714000PB141554185 |e 714200PB141554185 |k 0/700000/ |k 1/700000/714000/ |k 2/700000/714000/714200/ |p 3 |y j | ||
| 998 | |g 1064723845 |a Redlich, Matthias |m 1064723845:Redlich, Matthias |d 700000 |d 714000 |d 714200 |e 700000PR1064723845 |e 714000PR1064723845 |e 714200PR1064723845 |k 0/700000/ |k 1/700000/714000/ |k 2/700000/714000/714200/ |p 2 | ||
| 998 | |g 1073662373 |a Meyer, Sven |m 1073662373:Meyer, Sven |d 700000 |d 714000 |d 714200 |e 700000PM1073662373 |e 714000PM1073662373 |e 714200PM1073662373 |k 0/700000/ |k 1/700000/714000/ |k 2/700000/714000/714200/ |p 1 |x j | ||
| 999 | |a KXP-PPN1563608561 |e 2980901172 | ||
| BIB | |a Y | ||
| JSO | |a {"title":[{"title":"Evolution of linear perturbations in Lema\\^itre-Tolman-Bondi void models","title_sort":"Evolution of linear perturbations in Lema\\^itre-Tolman-Bondi void models"}],"person":[{"family":"Meyer","given":"Sven","roleDisplay":"VerfasserIn","display":"Meyer, Sven","role":"aut"},{"display":"Redlich, Matthias","roleDisplay":"VerfasserIn","role":"aut","family":"Redlich","given":"Matthias"},{"family":"Bartelmann","given":"Matthias","display":"Bartelmann, Matthias","roleDisplay":"VerfasserIn","role":"aut"}],"recId":"1563608561","language":["eng"],"type":{"bibl":"chapter","media":"Online-Ressource"},"note":["Gesehen am 29.09.2017"],"id":{"eki":["1563608561"]},"origin":[{"dateIssuedKey":"2015","dateIssuedDisp":"27 Mar 2015"}],"name":{"displayForm":["Sven Meyer, Matthias Redlich, Matthias Bartelmann"]},"relHost":[{"origin":[{"publisherPlace":"Ithaca, NY ; [Erscheinungsort nicht ermittelbar]","dateIssuedDisp":"1991-","dateIssuedKey":"1991","publisher":"Cornell University ; Arxiv.org"}],"id":{"eki":["509006531"],"zdb":["2225896-6"]},"physDesc":[{"extent":"Online-Ressource"}],"title":[{"title":"Arxiv","title_sort":"Arxiv"}],"pubHistory":["1991 -"],"titleAlt":[{"title":"Arxiv.org"},{"title":"Arxiv.org e-print archive"},{"title":"Arxiv e-print archive"},{"title":"De.arxiv.org"}],"part":{"year":"2015","text":"(2015) Artikel-Nummer 1412.3012, 39 Seiten","extent":"39"},"disp":"Evolution of linear perturbations in Lema\\^itre-Tolman-Bondi void modelsArxiv","note":["Gesehen am 28.05.2024"],"type":{"bibl":"edited-book","media":"Online-Ressource"},"recId":"509006531","language":["eng"]}],"physDesc":[{"extent":"39 S."}]} | ||
| SRT | |a MEYERSVENREVOLUTIONO2720 | ||