Evolution of linear perturbations in Lema\^itre-Tolman-Bondi void models

We study the evolution of linear perturbations in a Lema\^itre-Tolman-Bondi (LTB) void model with realistic cosmological initial conditions. Linear perturbation theory in LTB models is substantially more complicated than in standard Friedmann universes as the inhomogeneous background causes gauge-in...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Meyer, Sven (VerfasserIn) , Redlich, Matthias (VerfasserIn) , Bartelmann, Matthias (VerfasserIn)
Dokumenttyp: Article (Journal) Kapitel/Artikel
Sprache:Englisch
Veröffentlicht: 27 Mar 2015
In: Arxiv

Online-Zugang:Verlag, Volltext: http://arxiv.org/abs/1412.3012
Volltext
Verfasserangaben:Sven Meyer, Matthias Redlich, Matthias Bartelmann
Beschreibung
Zusammenfassung:We study the evolution of linear perturbations in a Lema\^itre-Tolman-Bondi (LTB) void model with realistic cosmological initial conditions. Linear perturbation theory in LTB models is substantially more complicated than in standard Friedmann universes as the inhomogeneous background causes gauge-invariant perturbations to couple at first order. As shown by Clarkson et al. (2009), the evolution is constrained by a system of linear partial differential equations which need to be integrated numerically. We present a new numerical scheme using finite element methods to solve this equation system and generate scalar initial conditions based on Gaussian random fields with an underlying power spectrum for the Bardeen potential. After spherical harmonic decomposition, the initial fluctuations are propagated in time and estimates of angular power spectra of each gauge invariant variable are computed as functions of redshift. This allows to analyse the coupling strength in a statistical way. We find significant couplings up to $25\%$ for large and deep voids of Gpc scale as required to fit the distance redshift relations of SNe.
Beschreibung:Gesehen am 29.09.2017
Beschreibung:Online Resource