Radiogenomics of glioblastoma: machine learning-based classification of molecular characteristics by using multiparametric and multiregional MR imaging features

PurposeTo evaluate the association of multiparametric and multiregional magnetic resonance (MR) imaging features with key molecular characteristics in patients with newly diagnosed glioblastoma.Materials and MethodsRetrospective data evaluation was approved by the local ethics committee, and the req...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Vollmuth, Philipp (VerfasserIn) , Reinhardt, Annekathrin (VerfasserIn) , Burth, Sina (VerfasserIn) , Wick, Antje (VerfasserIn) , Eidel, Oliver (VerfasserIn) , Debus, Jürgen (VerfasserIn) , Herold-Mende, Christel (VerfasserIn) , Unterberg, Andreas (VerfasserIn) , Pfister, Stefan (VerfasserIn) , Wick, Wolfgang (VerfasserIn) , Deimling, Andreas von (VerfasserIn) , Bendszus, Martin (VerfasserIn) , Capper, David (VerfasserIn)
Dokumenttyp: Article (Journal)
Sprache:Englisch
Veröffentlicht: 16 August 2016
In: Radiology
Year: 2016, Jahrgang: 281, Heft: 3, Pages: 907-918
ISSN:1527-1315
DOI:10.1148/radiol.2016161382
Online-Zugang:Verlag, kostenfrei, Volltext: http://dx.doi.org/10.1148/radiol.2016161382
Verlag, kostenfrei, Volltext: http://pubs.rsna.org/doi/abs/10.1148/radiol.2016161382
Volltext
Verfasserangaben:Philipp Kickingereder, David Bonekamp, Martha Nowosielski, Annekathrin Kratz, Martin Sill, Sina Burth, Antje Wick, Oliver Eidel, Heinz-Peter Schlemmer, Alexander Radbruch, Jürgen Debus, Christel Herold-Mende, Andreas Unterberg, David Jones, Stefan Pfister, Wolfgang Wick, Andreas von Deimling, Martin Bendszus, David Capper

MARC

LEADER 00000caa a2200000 c 4500
001 1563737434
003 DE-627
005 20220813230034.0
007 cr uuu---uuuuu
008 170922s2016 xx |||||o 00| ||eng c
024 7 |a 10.1148/radiol.2016161382  |2 doi 
035 |a (DE-627)1563737434 
035 |a (DE-576)49373743X 
035 |a (DE-599)BSZ49373743X 
035 |a (OCoLC)1340979505 
040 |a DE-627  |b ger  |c DE-627  |e rda 
041 |a eng 
084 |a 33  |2 sdnb 
100 1 |a Vollmuth, Philipp  |d 1987-  |e VerfasserIn  |0 (DE-588)1043270086  |0 (DE-627)771319177  |0 (DE-576)394600738  |4 aut 
245 1 0 |a Radiogenomics of glioblastoma  |b machine learning-based classification of molecular characteristics by using multiparametric and multiregional MR imaging features  |c Philipp Kickingereder, David Bonekamp, Martha Nowosielski, Annekathrin Kratz, Martin Sill, Sina Burth, Antje Wick, Oliver Eidel, Heinz-Peter Schlemmer, Alexander Radbruch, Jürgen Debus, Christel Herold-Mende, Andreas Unterberg, David Jones, Stefan Pfister, Wolfgang Wick, Andreas von Deimling, Martin Bendszus, David Capper 
264 1 |c 16 August 2016 
300 |a 12 
336 |a Text  |b txt  |2 rdacontent 
337 |a Computermedien  |b c  |2 rdamedia 
338 |a Online-Ressource  |b cr  |2 rdacarrier 
500 |a Gesehen am 22.09.2017 
520 |a PurposeTo evaluate the association of multiparametric and multiregional magnetic resonance (MR) imaging features with key molecular characteristics in patients with newly diagnosed glioblastoma.Materials and MethodsRetrospective data evaluation was approved by the local ethics committee, and the requirement to obtain informed consent was waived. Preoperative MR imaging features were correlated with key molecular characteristics within a single-institution cohort of 152 patients with newly diagnosed glioblastoma. Preoperative MR imaging features (n = 31) included multiparametric (anatomic and diffusion-, perfusion-, and susceptibility-weighted images) and multiregional (contrast-enhancing regions and hyperintense regions at nonenhanced fluid-attenuated inversion recovery imaging) information with histogram quantification of tumor volumes, volume ratios, apparent diffusion coefficients, cerebral blood flow, cerebral blood volume, and intratumoral susceptibility signals. Molecular characteristics determined included global DNA methylation subgroups (eg, mesenchymal, RTK I “PGFRA,” RTK II “classic”), MGMT promoter methylation status, and hallmark copy number variations (EGFR, PDGFRA, MDM4, and CDK4 amplification; PTEN, CDKN2A, NF1, and RB1 loss). Univariate analyses (voxel-lesion symptom mapping for tumor location, Wilcoxon test for all other MR imaging features) and machine learning models were applied to study the strength of association and discriminative value of MR imaging features for predicting underlying molecular characteristics.ResultsThere was no tumor location predilection for any of the assessed molecular parameters (permutation-adjusted P > .05). Univariate imaging parameter associations were noted for EGFR amplification and CDKN2A loss, with both demonstrating increased Gaussian-normalized relative cerebral blood volume and Gaussian-normalized relative cerebral blood flow values (area under the receiver operating characteristics curve: 63%-69%, false discovery rate-adjusted P < .05). Subjecting all MR imaging features to machine learning-based classification enabled prediction of EGFR amplification status and the RTK II glioblastoma subgroup with a moderate, yet significantly greater, accuracy (63% for EGFR [P < .01], 61% for RTK II [P = .01]) than prediction by chance; prediction accuracy for all other molecular parameters was not significant.ConclusionThe authors found associations between established MR imaging features and molecular characteristics, although not of sufficient strength to enable generation of machine learning classification models for reliable and clinically meaningful prediction of molecular characteristics in patients with glioblastoma.© RSNA, 2016Online supplemental material is available for this article. 
700 1 |a Reinhardt, Annekathrin  |d 1986-  |e VerfasserIn  |0 (DE-588)1078930309  |0 (DE-627)839814488  |0 (DE-576)452072611  |4 aut 
700 1 |a Burth, Sina  |e VerfasserIn  |0 (DE-588)1098194896  |0 (DE-627)857484885  |0 (DE-576)469019263  |4 aut 
700 1 |a Wick, Antje  |d 1972-  |e VerfasserIn  |0 (DE-588)122759869  |0 (DE-627)706032101  |0 (DE-576)293409609  |4 aut 
700 1 |a Eidel, Oliver  |d 1990-  |e VerfasserIn  |0 (DE-588)1098195175  |0 (DE-627)857485717  |0 (DE-576)469020407  |4 aut 
700 1 |a Debus, Jürgen  |d 1964-  |e VerfasserIn  |0 (DE-588)1022671421  |0 (DE-627)717025780  |0 (DE-576)365774944  |4 aut 
700 1 |a Herold-Mende, Christel  |e VerfasserIn  |0 (DE-588)1022936549  |0 (DE-627)717335577  |0 (DE-576)366194267  |4 aut 
700 1 |a Unterberg, Andreas  |e VerfasserIn  |0 (DE-588)1032681187  |0 (DE-627)738641200  |0 (DE-576)168441233  |4 aut 
700 1 |a Pfister, Stefan  |d 1974-  |e VerfasserIn  |0 (DE-588)123850215  |0 (DE-627)706450930  |0 (DE-576)293908400  |4 aut 
700 1 |a Wick, Wolfgang  |d 1970-  |e VerfasserIn  |0 (DE-588)120297736  |0 (DE-627)080586929  |0 (DE-576)186221320  |4 aut 
700 1 |a Deimling, Andreas von  |d 1959-  |e VerfasserIn  |0 (DE-588)103034115X  |0 (DE-627)735093946  |0 (DE-576)378138065  |4 aut 
700 1 |a Bendszus, Martin  |e VerfasserIn  |0 (DE-588)1032676426  |0 (DE-627)738634131  |0 (DE-576)175567697  |4 aut 
700 1 |a Capper, David  |d 1979-  |e VerfasserIn  |0 (DE-588)133950751  |0 (DE-627)558829902  |0 (DE-576)300212402  |4 aut 
773 0 8 |i Enthalten in  |t Radiology  |d Oak Brook, Ill. : Soc., 1923  |g 281(2016), 3, Seite 907-918  |h Online-Ressource  |w (DE-627)320487253  |w (DE-600)2010588-5  |w (DE-576)094056706  |x 1527-1315  |7 nnas  |a Radiogenomics of glioblastoma machine learning-based classification of molecular characteristics by using multiparametric and multiregional MR imaging features 
773 1 8 |g volume:281  |g year:2016  |g number:3  |g pages:907-918  |g extent:12  |a Radiogenomics of glioblastoma machine learning-based classification of molecular characteristics by using multiparametric and multiregional MR imaging features 
856 4 0 |u http://dx.doi.org/10.1148/radiol.2016161382  |x Verlag  |x Resolving-System  |z kostenfrei  |3 Volltext 
856 4 0 |u http://pubs.rsna.org/doi/abs/10.1148/radiol.2016161382  |x Verlag  |z kostenfrei  |3 Volltext 
951 |a AR 
992 |a 20170922 
993 |a Article 
994 |a 2016 
998 |g 133950751  |a Capper, David  |m 133950751:Capper, David  |d 910000  |d 912000  |e 910000PC133950751  |e 912000PC133950751  |k 0/910000/  |k 1/910000/912000/  |p 19  |y j 
998 |g 1032676426  |a Bendszus, Martin  |m 1032676426:Bendszus, Martin  |d 910000  |d 911100  |e 910000PB1032676426  |e 911100PB1032676426  |k 0/910000/  |k 1/910000/911100/  |p 18 
998 |g 103034115X  |a Deimling, Andreas von  |m 103034115X:Deimling, Andreas von  |d 910000  |d 912000  |e 910000PD103034115X  |e 912000PD103034115X  |k 0/910000/  |k 1/910000/912000/  |p 17 
998 |g 120297736  |a Wick, Wolfgang  |m 120297736:Wick, Wolfgang  |d 910000  |d 911100  |e 910000PW120297736  |e 911100PW120297736  |k 0/910000/  |k 1/910000/911100/  |p 16 
998 |g 123850215  |a Pfister, Stefan  |m 123850215:Pfister, Stefan  |d 910000  |d 910500  |e 910000PP123850215  |e 910500PP123850215  |k 0/910000/  |k 1/910000/910500/  |p 15 
998 |g 1032681187  |a Unterberg, Andreas  |m 1032681187:Unterberg, Andreas  |d 910000  |d 910200  |e 910000PU1032681187  |e 910200PU1032681187  |k 0/910000/  |k 1/910000/910200/  |p 13 
998 |g 1022936549  |a Herold-Mende, Christel  |m 1022936549:Herold-Mende, Christel  |d 910000  |d 910200  |e 910000PH1022936549  |e 910200PH1022936549  |k 0/910000/  |k 1/910000/910200/  |p 12 
998 |g 1022671421  |a Debus, Jürgen  |m 1022671421:Debus, Jürgen  |d 910000  |d 911400  |e 910000PD1022671421  |e 911400PD1022671421  |k 0/910000/  |k 1/910000/911400/  |p 11 
998 |g 1098195175  |a Eidel, Oliver  |m 1098195175:Eidel, Oliver  |p 8 
998 |g 122759869  |a Wick, Antje  |m 122759869:Wick, Antje  |d 910000  |d 911100  |e 910000PW122759869  |e 911100PW122759869  |k 0/910000/  |k 1/910000/911100/  |p 7 
998 |g 1098194896  |a Burth, Sina  |m 1098194896:Burth, Sina  |d 910000  |d 911100  |e 910000PB1098194896  |e 911100PB1098194896  |k 0/910000/  |k 1/910000/911100/  |p 6 
998 |g 1078930309  |a Reinhardt, Annekathrin  |m 1078930309:Reinhardt, Annekathrin  |d 910000  |d 912000  |e 910000PR1078930309  |e 912000PR1078930309  |k 0/910000/  |k 1/910000/912000/  |p 4 
998 |g 1043270086  |a Vollmuth, Philipp  |m 1043270086:Vollmuth, Philipp  |d 910000  |d 911100  |e 910000PV1043270086  |e 911100PV1043270086  |k 0/910000/  |k 1/910000/911100/  |p 1  |x j 
999 |a KXP-PPN1563737434  |e 2981288725 
BIB |a Y 
SER |a journal 
JSO |a {"note":["Gesehen am 22.09.2017"],"language":["eng"],"type":{"bibl":"article-journal","media":"Online-Ressource"},"title":[{"title_sort":"Radiogenomics of glioblastoma","title":"Radiogenomics of glioblastoma","subtitle":"machine learning-based classification of molecular characteristics by using multiparametric and multiregional MR imaging features"}],"person":[{"role":"aut","given":"Philipp","family":"Vollmuth","display":"Vollmuth, Philipp"},{"display":"Reinhardt, Annekathrin","given":"Annekathrin","role":"aut","family":"Reinhardt"},{"display":"Burth, Sina","given":"Sina","role":"aut","family":"Burth"},{"display":"Wick, Antje","given":"Antje","role":"aut","family":"Wick"},{"family":"Eidel","given":"Oliver","role":"aut","display":"Eidel, Oliver"},{"display":"Debus, Jürgen","given":"Jürgen","role":"aut","family":"Debus"},{"family":"Herold-Mende","given":"Christel","role":"aut","display":"Herold-Mende, Christel"},{"role":"aut","given":"Andreas","family":"Unterberg","display":"Unterberg, Andreas"},{"family":"Pfister","given":"Stefan","role":"aut","display":"Pfister, Stefan"},{"family":"Wick","role":"aut","given":"Wolfgang","display":"Wick, Wolfgang"},{"display":"Deimling, Andreas von","family":"Deimling","role":"aut","given":"Andreas von"},{"family":"Bendszus","given":"Martin","role":"aut","display":"Bendszus, Martin"},{"family":"Capper","role":"aut","given":"David","display":"Capper, David"}],"relHost":[{"title":[{"title":"Radiology","title_sort":"Radiology"}],"note":["Fortsetzung der Druck-Ausgabe","Gesehen 07.11.22"],"type":{"bibl":"periodical","media":"Online-Ressource"},"language":["eng"],"origin":[{"publisher":"Soc.","dateIssuedDisp":"1923-","dateIssuedKey":"1923","publisherPlace":"Oak Brook, Ill."}],"disp":"Radiogenomics of glioblastoma machine learning-based classification of molecular characteristics by using multiparametric and multiregional MR imaging featuresRadiology","recId":"320487253","physDesc":[{"extent":"Online-Ressource"}],"part":{"text":"281(2016), 3, Seite 907-918","extent":"12","issue":"3","pages":"907-918","volume":"281","year":"2016"},"id":{"eki":["320487253"],"issn":["1527-1315"],"zdb":["2010588-5"]},"pubHistory":["1.1923 -"],"name":{"displayForm":["The Radiological Society of North America"]},"corporate":[{"display":"Radiological Society of North America","role":"isb"}]}],"origin":[{"dateIssuedKey":"2016","dateIssuedDisp":"16 August 2016"}],"physDesc":[{"extent":"12 S."}],"recId":"1563737434","id":{"eki":["1563737434"],"doi":["10.1148/radiol.2016161382"]},"name":{"displayForm":["Philipp Kickingereder, David Bonekamp, Martha Nowosielski, Annekathrin Kratz, Martin Sill, Sina Burth, Antje Wick, Oliver Eidel, Heinz-Peter Schlemmer, Alexander Radbruch, Jürgen Debus, Christel Herold-Mende, Andreas Unterberg, David Jones, Stefan Pfister, Wolfgang Wick, Andreas von Deimling, Martin Bendszus, David Capper"]}} 
SRT |a VOLLMUTHPHRADIOGENOM1620