Methods, analysis, and the treatment of systematic errors for the electron electric dipole moment search in thorium monoxide

We recently set a new limit on the electric dipole moment of the electron (eEDM) (J. Baron et al., ACME collaboration, Science 343 (2014), 269-272), which represented an order-of-magnitude improvement on the previous limit and placed more stringent constraints on many CP-violating extensions to the...

Full description

Saved in:
Bibliographic Details
Main Authors: Baron, Jacob (Author) , Gurevich, Yulia (Author)
Format: Article (Journal) Chapter/Article
Language:English
Published: 2017
In: Arxiv

Online Access:Verlag, kostenfrei, Volltext: http://arxiv.org/abs/1612.09318
Get full text
Author Notes:ACME Collaboration: J. Baron, W.C. Campbell, D. DeMille, J.M. Doyle, G. Gabrielse, Y.V. Gurevich, P.W. Hess, N.R. Hutzler, E. Kirilov, I. Kozyryev, B.R. O'Leary, C.D. Panda, M.F. Parsons, B. Spaun, A.C. Vutha, A.D. West, E.P. West
Description
Summary:We recently set a new limit on the electric dipole moment of the electron (eEDM) (J. Baron et al., ACME collaboration, Science 343 (2014), 269-272), which represented an order-of-magnitude improvement on the previous limit and placed more stringent constraints on many CP-violating extensions to the Standard Model. In this paper we discuss the measurement in detail. The experimental method and associated apparatus are described, together with the techniques used to isolate the eEDM signal. In particular, we detail the way experimental switches were used to suppress effects that can mimic the signal of interest. The methods used to search for systematic errors, and models explaining observed systematic errors, are also described. We briefly discuss possible improvements to the experiment.
Item Description:Gesehen am 10.10.2017
Physical Description:Online Resource