Gauge-invariant fields and flow equations for Yang-Mills theories
We discuss the concept of gauge-invariant fields for non-abelian gauge theories. Infinitesimal fluctuations around a given gauge field can be split into physical and gauge fluctuations. Starting from some reference field the gauge-invariant fields are constructed by consecutively adding physical flu...
Gespeichert in:
| 1. Verfasser: | |
|---|---|
| Dokumenttyp: | Article (Journal) Kapitel/Artikel |
| Sprache: | Englisch |
| Veröffentlicht: |
17 Jul 2018
|
| In: |
Arxiv
|
| Online-Zugang: | Verlag, kostenfrei, Volltext: http://arxiv.org/abs/1710.02494 |
| Verfasserangaben: | C. Wetterich |
MARC
| LEADER | 00000caa a2200000 c 4500 | ||
|---|---|---|---|
| 001 | 1564529444 | ||
| 003 | DE-627 | ||
| 005 | 20220814004004.0 | ||
| 007 | cr uuu---uuuuu | ||
| 008 | 171018s2018 xx |||||o 00| ||eng c | ||
| 035 | |a (DE-627)1564529444 | ||
| 035 | |a (DE-576)49452944X | ||
| 035 | |a (DE-599)BSZ49452944X | ||
| 035 | |a (OCoLC)1340980793 | ||
| 040 | |a DE-627 |b ger |c DE-627 |e rda | ||
| 041 | |a eng | ||
| 084 | |a 29 |2 sdnb | ||
| 100 | 1 | |a Wetterich, Christof |d 1952- |e VerfasserIn |0 (DE-588)109400070 |0 (DE-627)683447629 |0 (DE-576)356552608 |4 aut | |
| 245 | 1 | 0 | |a Gauge-invariant fields and flow equations for Yang-Mills theories |c C. Wetterich |
| 264 | 1 | |c 17 Jul 2018 | |
| 300 | |a 29 | ||
| 336 | |a Text |b txt |2 rdacontent | ||
| 337 | |a Computermedien |b c |2 rdamedia | ||
| 338 | |a Online-Ressource |b cr |2 rdacarrier | ||
| 500 | |a Gesehen am 11.01.2019 | ||
| 520 | |a We discuss the concept of gauge-invariant fields for non-abelian gauge theories. Infinitesimal fluctuations around a given gauge field can be split into physical and gauge fluctuations. Starting from some reference field the gauge-invariant fields are constructed by consecutively adding physical fluctuations. An effective action that depends on gauge-invariant fields becomes a gauge-invariant functional of arbitrary gauge fields by associating to every gauge field the corresponding gauge-invariant field. The gauge-invariant effective action can be obtained from an implicit functional integral with a suitable "physical gauge fixing". We generalize this concept to the gauge-invariant effective average action or flowing action, which involves an infrared cutoff. It obeys a gauge-invariant functional flow equation. We demonstrate the use of this flow equation by a simple computation of the running gauge coupling and propagator in pure $SU(N)$-Yang-Mills theory. | ||
| 650 | 4 | |a General Relativity and Quantum Cosmology | |
| 650 | 4 | |a High Energy Physics - Theory | |
| 773 | 0 | 8 | |i Enthalten in |t Arxiv |d Ithaca, NY : Cornell University, 1991 |g (2018) Artikel-Nummer 1710.02494, 29 Seiten |h Online-Ressource |w (DE-627)509006531 |w (DE-600)2225896-6 |w (DE-576)28130436X |7 nnas |a Gauge-invariant fields and flow equations for Yang-Mills theories |
| 773 | 1 | 8 | |g year:2018 |g extent:29 |a Gauge-invariant fields and flow equations for Yang-Mills theories |
| 856 | 4 | 0 | |u http://arxiv.org/abs/1710.02494 |x Verlag |z kostenfrei |3 Volltext |
| 951 | |a AR | ||
| 992 | |a 20171018 | ||
| 993 | |a Article | ||
| 998 | |g 109400070 |a Wetterich, Christof |m 109400070:Wetterich, Christof |d 130000 |d 130300 |e 130000PW109400070 |e 130300PW109400070 |k 0/130000/ |k 1/130000/130300/ |p 1 |x j |y j | ||
| 999 | |a KXP-PPN1564529444 |e 2984591658 | ||
| BIB | |a Y | ||
| JSO | |a {"person":[{"family":"Wetterich","given":"Christof","roleDisplay":"VerfasserIn","display":"Wetterich, Christof","role":"aut"}],"title":[{"title_sort":"Gauge-invariant fields and flow equations for Yang-Mills theories","title":"Gauge-invariant fields and flow equations for Yang-Mills theories"}],"note":["Gesehen am 11.01.2019"],"type":{"media":"Online-Ressource","bibl":"chapter"},"language":["eng"],"recId":"1564529444","name":{"displayForm":["C. Wetterich"]},"origin":[{"dateIssuedKey":"2018","dateIssuedDisp":"17 Jul 2018"}],"id":{"eki":["1564529444"]},"physDesc":[{"extent":"29 S."}],"relHost":[{"type":{"bibl":"edited-book","media":"Online-Ressource"},"disp":"Gauge-invariant fields and flow equations for Yang-Mills theoriesArxiv","note":["Gesehen am 28.05.2024"],"recId":"509006531","language":["eng"],"pubHistory":["1991 -"],"titleAlt":[{"title":"Arxiv.org"},{"title":"Arxiv.org e-print archive"},{"title":"Arxiv e-print archive"},{"title":"De.arxiv.org"}],"part":{"year":"2018","text":"(2018) Artikel-Nummer 1710.02494, 29 Seiten","extent":"29"},"title":[{"title":"Arxiv","title_sort":"Arxiv"}],"physDesc":[{"extent":"Online-Ressource"}],"origin":[{"dateIssuedDisp":"1991-","dateIssuedKey":"1991","publisher":"Cornell University ; Arxiv.org","publisherPlace":"Ithaca, NY ; [Erscheinungsort nicht ermittelbar]"}],"id":{"eki":["509006531"],"zdb":["2225896-6"]}}]} | ||
| SRT | |a WETTERICHCGAUGEINVAR1720 | ||