Machine-learned Identification of RR lyrae stars from sparse, multi-band data: the PS1 Sample

RR Lyrae stars may be the best practical tracers of Galactic halo (sub-)structure and kinematics. The PanSTARRS1 (PS1) $3\pi$ survey offers multi-band, multi-epoch, precise photometry across much of the sky, but a robust identification of RR Lyrae stars in this data set poses a challenge, given PS1&...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Sesar, Branimir (VerfasserIn) , Grebel, Eva K. (VerfasserIn)
Dokumenttyp: Article (Journal) Kapitel/Artikel
Sprache:Englisch
Veröffentlicht: 2017
In: Arxiv

Online-Zugang:Verlag, kostenfrei, Volltext: http://arxiv.org/abs/1611.08596
Volltext
Verfasserangaben:Branimir Sesar, Nina Hernitschek, Sandra Mitrović, Željko Ivezić, Hans-Walter Rix, Judith G. Cohen, Edouard J. Bernard, Eva K. Grebel, Nicolas F. Martin, Edward F. Schlafly, William S. Burgett, Peter W. Draper, Heather Flewelling, Nick Kaiser, Rolf P. Kudritzki, Eugene A. Magnier, Nigel Metcalfe, John L. Tonry, and Christopher Waters

MARC

LEADER 00000caa a2200000 c 4500
001 1564608093
003 DE-627
005 20220814004942.0
007 cr uuu---uuuuu
008 171020s2017 xx |||||o 00| ||eng c
035 |a (DE-627)1564608093 
035 |a (DE-576)494608099 
035 |a (DE-599)BSZ494608099 
035 |a (OCoLC)1340980724 
040 |a DE-627  |b ger  |c DE-627  |e rda 
041 |a eng 
084 |a 29  |2 sdnb 
100 1 |a Sesar, Branimir  |e VerfasserIn  |4 aut 
245 1 0 |a Machine-learned Identification of RR lyrae stars from sparse, multi-band data  |b the PS1 Sample  |c Branimir Sesar, Nina Hernitschek, Sandra Mitrović, Željko Ivezić, Hans-Walter Rix, Judith G. Cohen, Edouard J. Bernard, Eva K. Grebel, Nicolas F. Martin, Edward F. Schlafly, William S. Burgett, Peter W. Draper, Heather Flewelling, Nick Kaiser, Rolf P. Kudritzki, Eugene A. Magnier, Nigel Metcalfe, John L. Tonry, and Christopher Waters 
264 1 |c 2017 
300 |a 18 
336 |a Text  |b txt  |2 rdacontent 
337 |a Computermedien  |b c  |2 rdamedia 
338 |a Online-Ressource  |b cr  |2 rdacarrier 
500 |a Gesehen am 20.10.2017 
520 |a RR Lyrae stars may be the best practical tracers of Galactic halo (sub-)structure and kinematics. The PanSTARRS1 (PS1) $3\pi$ survey offers multi-band, multi-epoch, precise photometry across much of the sky, but a robust identification of RR Lyrae stars in this data set poses a challenge, given PS1's sparse, asynchronous multi-band light curves ($\lesssim 12$ epochs in each of five bands, taken over a 4.5-year period). We present a novel template fitting technique that uses well-defined and physically motivated multi-band light curves of RR Lyrae stars, and demonstrate that we get accurate period estimates, precise to 2~sec in $>80\%$ of cases. We augment these light curve fits with other {\em features} from photometric time-series and provide them to progressively more detailed machine-learned classification models. From these models we are able to select the widest ($3/4$ of the sky) and deepest (reaching 120 kpc) sample of RR Lyrae stars to date. The PS1 sample of $\sim 45,000$ RRab stars is pure (90\%), and complete (80\% at 80 kpc) at high galactic latitudes. It also provides distances precise to 3\%, measured with newly derived period-luminosity relations for optical/near-infrared PS1 bands. With the addition of proper motions from {\em Gaia} and radial velocity measurements from multi-object spectroscopic surveys, we expect the PS1 sample of RR Lyrae stars to become the premier source for studying the structure, kinematics, and the gravitational potential of the Galactic halo. The techniques presented in this study should translate well to other sparse, multi-band data sets, such as those produced by the Dark Energy Survey and the upcoming Large Synoptic Survey Telescope Galactic plane sub-survey. 
650 4 |a Astrophysics - Astrophysics of Galaxies 
700 1 |a Grebel, Eva K.  |d 1966-  |e VerfasserIn  |0 (DE-588)1020239085  |0 (DE-627)691153221  |0 (DE-576)359782833  |4 aut 
773 0 8 |i Enthalten in  |t Arxiv  |d Ithaca, NY : Cornell University, 1991  |g (2017) Artikel-Nummer 1611.08596, 18 Seiten  |h Online-Ressource  |w (DE-627)509006531  |w (DE-600)2225896-6  |w (DE-576)28130436X  |7 nnas  |a Machine-learned Identification of RR lyrae stars from sparse, multi-band data the PS1 Sample 
773 1 8 |g year:2017  |g extent:18  |a Machine-learned Identification of RR lyrae stars from sparse, multi-band data the PS1 Sample 
856 4 0 |u http://arxiv.org/abs/1611.08596  |x Verlag  |z kostenfrei  |3 Volltext 
951 |a AR 
992 |a 20171020 
993 |a Article 
998 |g 1020239085  |a Grebel, Eva K.  |m 1020239085:Grebel, Eva K.  |d 700000  |d 714000  |d 714100  |e 700000PG1020239085  |e 714000PG1020239085  |e 714100PG1020239085  |k 0/700000/  |k 1/700000/714000/  |k 2/700000/714000/714100/  |p 8 
999 |a KXP-PPN1564608093  |e 2984716140 
BIB |a Y 
JSO |a {"recId":"1564608093","title":[{"title":"Machine-learned Identification of RR lyrae stars from sparse, multi-band data","subtitle":"the PS1 Sample","title_sort":"Machine-learned Identification of RR lyrae stars from sparse, multi-band data"}],"name":{"displayForm":["Branimir Sesar, Nina Hernitschek, Sandra Mitrović, Željko Ivezić, Hans-Walter Rix, Judith G. Cohen, Edouard J. Bernard, Eva K. Grebel, Nicolas F. Martin, Edward F. Schlafly, William S. Burgett, Peter W. Draper, Heather Flewelling, Nick Kaiser, Rolf P. Kudritzki, Eugene A. Magnier, Nigel Metcalfe, John L. Tonry, and Christopher Waters"]},"language":["eng"],"type":{"bibl":"chapter","media":"Online-Ressource"},"physDesc":[{"extent":"18 S."}],"person":[{"display":"Sesar, Branimir","role":"aut","given":"Branimir","roleDisplay":"VerfasserIn","family":"Sesar"},{"role":"aut","display":"Grebel, Eva K.","given":"Eva K.","roleDisplay":"VerfasserIn","family":"Grebel"}],"note":["Gesehen am 20.10.2017"],"origin":[{"dateIssuedDisp":"2017","dateIssuedKey":"2017"}],"relHost":[{"title":[{"title":"Arxiv","title_sort":"Arxiv"}],"disp":"Machine-learned Identification of RR lyrae stars from sparse, multi-band data the PS1 SampleArxiv","recId":"509006531","pubHistory":["1991 -"],"language":["eng"],"type":{"bibl":"edited-book","media":"Online-Ressource"},"part":{"extent":"18","year":"2017","text":"(2017) Artikel-Nummer 1611.08596, 18 Seiten"},"note":["Gesehen am 28.05.2024"],"physDesc":[{"extent":"Online-Ressource"}],"id":{"zdb":["2225896-6"],"eki":["509006531"]},"titleAlt":[{"title":"Arxiv.org"},{"title":"Arxiv.org e-print archive"},{"title":"Arxiv e-print archive"},{"title":"De.arxiv.org"}],"origin":[{"publisher":"Cornell University ; Arxiv.org","dateIssuedKey":"1991","dateIssuedDisp":"1991-","publisherPlace":"Ithaca, NY ; [Erscheinungsort nicht ermittelbar]"}]}],"id":{"eki":["1564608093"]}} 
SRT |a SESARBRANIMACHINELEA2017