Finite element approximation of flow of fluids with shear-rate-and pressure-dependent viscosity
In this paper we consider a class of incompressible viscous fluids whose viscosity depends on the shear rate and pressure. We deal with isothermal steady flow and analyse the Galerkin discretization of the corresponding equations. We discuss the existence and uniqueness of discrete solutions and the...
Gespeichert in:
| Hauptverfasser: | , , |
|---|---|
| Dokumenttyp: | Article (Journal) |
| Sprache: | Englisch |
| Veröffentlicht: |
2012
|
| In: |
IMA journal of numerical analysis
Year: 2012, Jahrgang: 32, Heft: 4, Pages: 1604-1634 |
| ISSN: | 1464-3642 |
| DOI: | 10.1093/imanum/drr033 |
| Online-Zugang: | Verlag, Volltext: http://dx.doi.org/10.1093/imanum/drr033 Verlag, Volltext: https://academic.oup.com/imajna/article/32/4/1604/654493/Finite-element-approximation-of-flow-of-fluids |
| Verfasserangaben: | Adrian Hirn, Martin Lanzendörfer, Jan Stebel |
MARC
| LEADER | 00000caa a2200000 c 4500 | ||
|---|---|---|---|
| 001 | 1564664422 | ||
| 003 | DE-627 | ||
| 005 | 20220814005831.0 | ||
| 007 | cr uuu---uuuuu | ||
| 008 | 171023s2012 xx |||||o 00| ||eng c | ||
| 024 | 7 | |a 10.1093/imanum/drr033 |2 doi | |
| 035 | |a (DE-627)1564664422 | ||
| 035 | |a (DE-576)494664428 | ||
| 035 | |a (DE-599)BSZ494664428 | ||
| 035 | |a (OCoLC)1340981022 | ||
| 040 | |a DE-627 |b ger |c DE-627 |e rda | ||
| 041 | |a eng | ||
| 084 | |a 27 |2 sdnb | ||
| 100 | 1 | |a Hirn, Adrian |e VerfasserIn |0 (DE-588)1022361724 |0 (DE-627)716960087 |0 (DE-576)365277975 |4 aut | |
| 245 | 1 | 0 | |a Finite element approximation of flow of fluids with shear-rate-and pressure-dependent viscosity |c Adrian Hirn, Martin Lanzendörfer, Jan Stebel |
| 264 | 1 | |c 2012 | |
| 300 | |a 31 | ||
| 336 | |a Text |b txt |2 rdacontent | ||
| 337 | |a Computermedien |b c |2 rdamedia | ||
| 338 | |a Online-Ressource |b cr |2 rdacarrier | ||
| 500 | |a Published: 30 December 2011 | ||
| 500 | |a Gesehen am 23.10.2017 | ||
| 520 | |a In this paper we consider a class of incompressible viscous fluids whose viscosity depends on the shear rate and pressure. We deal with isothermal steady flow and analyse the Galerkin discretization of the corresponding equations. We discuss the existence and uniqueness of discrete solutions and their convergence to the solution of the original problem. In particular, we derive a priori error estimates, which provide optimal rates of convergence with respect to the expected regularity of the solution. Finally, we demonstrate the achieved results by numerical experiments. The fluid models under consideration appear in many practical problems, for instance, in elastohydrodynamic lubrication where very high pressures occur. Here we consider shear-thinning fluid models similar to the power-law/Carreau model. A restricted sublinear dependence of the viscosity on the pressure is allowed. The mathematical theory concerned with the self-consistency of the governing equations has emerged only recently. We adopt the established theory in the context of discrete approximations. To our knowledge, this is the first analysis of the finite element method for fluids with pressure-dependent viscosity. The derived estimates coincide with the optimal error estimates established recently for Carreau-type models, which are covered as a special case. | ||
| 700 | 1 | |a Lanzendörfer, Martin |e VerfasserIn |0 (DE-588)1142136752 |0 (DE-627)1001185986 |0 (DE-576)494664339 |4 aut | |
| 700 | 1 | |a Stebel, Jan |e VerfasserIn |0 (DE-588)1142136817 |0 (DE-627)1001186060 |0 (DE-576)494664290 |4 aut | |
| 773 | 0 | 8 | |i Enthalten in |a Institute of Mathematics and Its Applications |t IMA journal of numerical analysis |d Oxford : Oxford Univ. Press, 1981 |g 32(2012), 4, Seite 1604-1634 |h Online-Ressource |w (DE-627)266016162 |w (DE-600)1466710-1 |w (DE-576)074960075 |x 1464-3642 |7 nnas |
| 773 | 1 | 8 | |g volume:32 |g year:2012 |g number:4 |g pages:1604-1634 |g extent:31 |a Finite element approximation of flow of fluids with shear-rate-and pressure-dependent viscosity |
| 856 | 4 | 0 | |u http://dx.doi.org/10.1093/imanum/drr033 |x Verlag |x Resolving-System |3 Volltext |
| 856 | 4 | 0 | |u https://academic.oup.com/imajna/article/32/4/1604/654493/Finite-element-approximation-of-flow-of-fluids |x Verlag |3 Volltext |
| 951 | |a AR | ||
| 992 | |a 20171023 | ||
| 993 | |a Article | ||
| 994 | |a 2012 | ||
| 998 | |g 1022361724 |a Hirn, Adrian |m 1022361724:Hirn, Adrian |d 110000 |d 110200 |d 110000 |d 110400 |e 110000PH1022361724 |e 110200PH1022361724 |e 110000PH1022361724 |e 110400PH1022361724 |k 0/110000/ |k 1/110000/110200/ |k 0/110000/ |k 1/110000/110400/ |p 1 |x j | ||
| 999 | |a KXP-PPN1564664422 |e 2985810388 | ||
| BIB | |a Y | ||
| SER | |a journal | ||
| JSO | |a {"relHost":[{"name":{"displayForm":["the Institute of Mathematics and Its Applications, Southend-on-Sea"]},"id":{"zdb":["1466710-1"],"eki":["266016162"],"issn":["1464-3642"]},"origin":[{"dateIssuedKey":"1981","publisher":"Oxford Univ. Press","dateIssuedDisp":"1981-","publisherPlace":"Oxford"}],"physDesc":[{"extent":"Online-Ressource"}],"title":[{"title_sort":"IMA journal of numerical analysis","subtitle":"IMAJNA","title":"IMA journal of numerical analysis"}],"recId":"266016162","corporate":[{"role":"aut","display":"Institute of Mathematics and Its Applications","roleDisplay":"VerfasserIn"}],"language":["eng"],"disp":"Institute of Mathematics and Its ApplicationsIMA journal of numerical analysis","note":["Gesehen am 15. Februar 2017"],"type":{"bibl":"periodical","media":"Online-Ressource"},"part":{"year":"2012","issue":"4","pages":"1604-1634","text":"32(2012), 4, Seite 1604-1634","volume":"32","extent":"31"},"titleAlt":[{"title":"Journal of numerical analysis"},{"title":"IMAJNA"}],"pubHistory":["1.1981 -"]}],"physDesc":[{"extent":"31 S."}],"id":{"eki":["1564664422"],"doi":["10.1093/imanum/drr033"]},"origin":[{"dateIssuedDisp":"2012","dateIssuedKey":"2012"}],"name":{"displayForm":["Adrian Hirn, Martin Lanzendörfer, Jan Stebel"]},"recId":"1564664422","language":["eng"],"note":["Published: 30 December 2011","Gesehen am 23.10.2017"],"type":{"media":"Online-Ressource","bibl":"article-journal"},"title":[{"title":"Finite element approximation of flow of fluids with shear-rate-and pressure-dependent viscosity","title_sort":"Finite element approximation of flow of fluids with shear-rate-and pressure-dependent viscosity"}],"person":[{"roleDisplay":"VerfasserIn","display":"Hirn, Adrian","role":"aut","family":"Hirn","given":"Adrian"},{"role":"aut","display":"Lanzendörfer, Martin","roleDisplay":"VerfasserIn","given":"Martin","family":"Lanzendörfer"},{"role":"aut","display":"Stebel, Jan","roleDisplay":"VerfasserIn","given":"Jan","family":"Stebel"}]} | ||
| SRT | |a HIRNADRIANFINITEELEM2012 | ||