Finite element approximation of flow of fluids with shear-rate-and pressure-dependent viscosity

In this paper we consider a class of incompressible viscous fluids whose viscosity depends on the shear rate and pressure. We deal with isothermal steady flow and analyse the Galerkin discretization of the corresponding equations. We discuss the existence and uniqueness of discrete solutions and the...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Hirn, Adrian (VerfasserIn) , Lanzendörfer, Martin (VerfasserIn) , Stebel, Jan (VerfasserIn)
Dokumenttyp: Article (Journal)
Sprache:Englisch
Veröffentlicht: 2012
In: IMA journal of numerical analysis
Year: 2012, Jahrgang: 32, Heft: 4, Pages: 1604-1634
ISSN:1464-3642
DOI:10.1093/imanum/drr033
Online-Zugang:Verlag, Volltext: http://dx.doi.org/10.1093/imanum/drr033
Verlag, Volltext: https://academic.oup.com/imajna/article/32/4/1604/654493/Finite-element-approximation-of-flow-of-fluids
Volltext
Verfasserangaben:Adrian Hirn, Martin Lanzendörfer, Jan Stebel

MARC

LEADER 00000caa a2200000 c 4500
001 1564664422
003 DE-627
005 20220814005831.0
007 cr uuu---uuuuu
008 171023s2012 xx |||||o 00| ||eng c
024 7 |a 10.1093/imanum/drr033  |2 doi 
035 |a (DE-627)1564664422 
035 |a (DE-576)494664428 
035 |a (DE-599)BSZ494664428 
035 |a (OCoLC)1340981022 
040 |a DE-627  |b ger  |c DE-627  |e rda 
041 |a eng 
084 |a 27  |2 sdnb 
100 1 |a Hirn, Adrian  |e VerfasserIn  |0 (DE-588)1022361724  |0 (DE-627)716960087  |0 (DE-576)365277975  |4 aut 
245 1 0 |a Finite element approximation of flow of fluids with shear-rate-and pressure-dependent viscosity  |c Adrian Hirn, Martin Lanzendörfer, Jan Stebel 
264 1 |c 2012 
300 |a 31 
336 |a Text  |b txt  |2 rdacontent 
337 |a Computermedien  |b c  |2 rdamedia 
338 |a Online-Ressource  |b cr  |2 rdacarrier 
500 |a Published: 30 December 2011 
500 |a Gesehen am 23.10.2017 
520 |a In this paper we consider a class of incompressible viscous fluids whose viscosity depends on the shear rate and pressure. We deal with isothermal steady flow and analyse the Galerkin discretization of the corresponding equations. We discuss the existence and uniqueness of discrete solutions and their convergence to the solution of the original problem. In particular, we derive a priori error estimates, which provide optimal rates of convergence with respect to the expected regularity of the solution. Finally, we demonstrate the achieved results by numerical experiments. The fluid models under consideration appear in many practical problems, for instance, in elastohydrodynamic lubrication where very high pressures occur. Here we consider shear-thinning fluid models similar to the power-law/Carreau model. A restricted sublinear dependence of the viscosity on the pressure is allowed. The mathematical theory concerned with the self-consistency of the governing equations has emerged only recently. We adopt the established theory in the context of discrete approximations. To our knowledge, this is the first analysis of the finite element method for fluids with pressure-dependent viscosity. The derived estimates coincide with the optimal error estimates established recently for Carreau-type models, which are covered as a special case. 
700 1 |a Lanzendörfer, Martin  |e VerfasserIn  |0 (DE-588)1142136752  |0 (DE-627)1001185986  |0 (DE-576)494664339  |4 aut 
700 1 |a Stebel, Jan  |e VerfasserIn  |0 (DE-588)1142136817  |0 (DE-627)1001186060  |0 (DE-576)494664290  |4 aut 
773 0 8 |i Enthalten in  |a Institute of Mathematics and Its Applications  |t IMA journal of numerical analysis  |d Oxford : Oxford Univ. Press, 1981  |g 32(2012), 4, Seite 1604-1634  |h Online-Ressource  |w (DE-627)266016162  |w (DE-600)1466710-1  |w (DE-576)074960075  |x 1464-3642  |7 nnas 
773 1 8 |g volume:32  |g year:2012  |g number:4  |g pages:1604-1634  |g extent:31  |a Finite element approximation of flow of fluids with shear-rate-and pressure-dependent viscosity 
856 4 0 |u http://dx.doi.org/10.1093/imanum/drr033  |x Verlag  |x Resolving-System  |3 Volltext 
856 4 0 |u https://academic.oup.com/imajna/article/32/4/1604/654493/Finite-element-approximation-of-flow-of-fluids  |x Verlag  |3 Volltext 
951 |a AR 
992 |a 20171023 
993 |a Article 
994 |a 2012 
998 |g 1022361724  |a Hirn, Adrian  |m 1022361724:Hirn, Adrian  |d 110000  |d 110200  |d 110000  |d 110400  |e 110000PH1022361724  |e 110200PH1022361724  |e 110000PH1022361724  |e 110400PH1022361724  |k 0/110000/  |k 1/110000/110200/  |k 0/110000/  |k 1/110000/110400/  |p 1  |x j 
999 |a KXP-PPN1564664422  |e 2985810388 
BIB |a Y 
SER |a journal 
JSO |a {"relHost":[{"name":{"displayForm":["the Institute of Mathematics and Its Applications, Southend-on-Sea"]},"id":{"zdb":["1466710-1"],"eki":["266016162"],"issn":["1464-3642"]},"origin":[{"dateIssuedKey":"1981","publisher":"Oxford Univ. Press","dateIssuedDisp":"1981-","publisherPlace":"Oxford"}],"physDesc":[{"extent":"Online-Ressource"}],"title":[{"title_sort":"IMA journal of numerical analysis","subtitle":"IMAJNA","title":"IMA journal of numerical analysis"}],"recId":"266016162","corporate":[{"role":"aut","display":"Institute of Mathematics and Its Applications","roleDisplay":"VerfasserIn"}],"language":["eng"],"disp":"Institute of Mathematics and Its ApplicationsIMA journal of numerical analysis","note":["Gesehen am 15. Februar 2017"],"type":{"bibl":"periodical","media":"Online-Ressource"},"part":{"year":"2012","issue":"4","pages":"1604-1634","text":"32(2012), 4, Seite 1604-1634","volume":"32","extent":"31"},"titleAlt":[{"title":"Journal of numerical analysis"},{"title":"IMAJNA"}],"pubHistory":["1.1981 -"]}],"physDesc":[{"extent":"31 S."}],"id":{"eki":["1564664422"],"doi":["10.1093/imanum/drr033"]},"origin":[{"dateIssuedDisp":"2012","dateIssuedKey":"2012"}],"name":{"displayForm":["Adrian Hirn, Martin Lanzendörfer, Jan Stebel"]},"recId":"1564664422","language":["eng"],"note":["Published: 30 December 2011","Gesehen am 23.10.2017"],"type":{"media":"Online-Ressource","bibl":"article-journal"},"title":[{"title":"Finite element approximation of flow of fluids with shear-rate-and pressure-dependent viscosity","title_sort":"Finite element approximation of flow of fluids with shear-rate-and pressure-dependent viscosity"}],"person":[{"roleDisplay":"VerfasserIn","display":"Hirn, Adrian","role":"aut","family":"Hirn","given":"Adrian"},{"role":"aut","display":"Lanzendörfer, Martin","roleDisplay":"VerfasserIn","given":"Martin","family":"Lanzendörfer"},{"role":"aut","display":"Stebel, Jan","roleDisplay":"VerfasserIn","given":"Jan","family":"Stebel"}]} 
SRT |a HIRNADRIANFINITEELEM2012