Parallel-tempering cluster algorithm for computer simulations of critical phenomena

In finite-size scaling analyses of Monte Carlo simulations of second-order phase transitions one often needs an extended temperature range around the critical point. By combining the parallel-tempering algorithm with cluster updates and an adaptive routine to find the temperature window of interest,...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Bittner, Elmar (VerfasserIn) , Janke, Wolfhard (VerfasserIn)
Dokumenttyp: Article (Journal)
Sprache:Englisch
Veröffentlicht: 1 September 2011
In: Physical review. E, Statistical, nonlinear, and soft matter physics
Year: 2011, Jahrgang: 84, Heft: 3, Pages: 036701
ISSN:1550-2376
DOI:10.1103/PhysRevE.84.036701
Online-Zugang:Verlag, Volltext: http://dx.doi.org/10.1103/PhysRevE.84.036701
Verlag, Volltext: https://link.aps.org/doi/10.1103/PhysRevE.84.036701
Volltext
Verfasserangaben:Elmar Bittner and Wolfhard Janke
Beschreibung
Zusammenfassung:In finite-size scaling analyses of Monte Carlo simulations of second-order phase transitions one often needs an extended temperature range around the critical point. By combining the parallel-tempering algorithm with cluster updates and an adaptive routine to find the temperature window of interest, we introduce a flexible and powerful method for systematic investigations of critical phenomena. As a result, we gain one to two orders of magnitude in the performance for two- and three-dimensional Ising models in comparison with the recently proposed Wang-Landau recursion for cluster algorithms based on the multibondic algorithm, which is already a great improvement over the standard multicanonical variant.
Beschreibung:Gesehen am 13.11.2017
Beschreibung:Online Resource
ISSN:1550-2376
DOI:10.1103/PhysRevE.84.036701