Echoes of asymptotic silence in causal set quantum gravity

We explore the idea of asymptotic silence in causal set theory and find that causal sets approximated by continuum spacetimes exhibit behavior akin to asymptotic silence. We make use of an intrinsic definition of spatial distance between causal set elements in the discrete analogue of a spatial hype...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Eichhorn, Astrid (VerfasserIn) , Mizera, Sebastian (VerfasserIn) , Surya, Sumati (VerfasserIn)
Dokumenttyp: Article (Journal) Editorial
Sprache:Englisch
Veröffentlicht: 20 July 2017
In: Classical and quantum gravity
Year: 2017, Jahrgang: 34, Heft: 16, Pages: ?
ISSN:1361-6382
DOI:10.1088/1361-6382/aa7d1b
Online-Zugang:Verlag, Volltext: http://dx.doi.org/10.1088/1361-6382/aa7d1b
Verlag, Volltext: http://stacks.iop.org/0264-9381/34/i=16/a=16LT01
Volltext
Verfasserangaben:Astrid Eichhorn, Sebastian Mizera and Sumati Surya
Beschreibung
Zusammenfassung:We explore the idea of asymptotic silence in causal set theory and find that causal sets approximated by continuum spacetimes exhibit behavior akin to asymptotic silence. We make use of an intrinsic definition of spatial distance between causal set elements in the discrete analogue of a spatial hypersurface. Using numerical simulations for causal sets approximated by ##IMG## [http://ej.iop.org/images/0264-9381/34/16/16LT01/cqgaa7d1bieqn001.gif] $ \newcommandṃD \dm=2, 3$ and 4 dimensional Minkowski spacetime, we show that while the discrete distance rapidly converges to the continuum distance at a scale roughly an order of magnitude larger than the discreteness scale, it is significantly larger on small scales. This allows us to define an effective dimension which exhibits dimensional reduction in the ultraviolet, while monotonically increasing to the continuum dimension with increasing continuum distance. We interpret these findings as manifestations of asymptotic silence in causal set theory.
Beschreibung:Gesehen am 24.11.2017
Beschreibung:Online Resource
ISSN:1361-6382
DOI:10.1088/1361-6382/aa7d1b