Shear viscosity and spin sum rules in strongly interacting Fermi gases
Fermi gases with short-range interactions are ubiquitous in ultracold atomic systems. In the absence of spin-flipping processes the number of atoms in each spin species is conserved separately, and we discuss the associated Ward identities. For contact interactions the spin conductivity spectral fun...
Gespeichert in:
| 1. Verfasser: | |
|---|---|
| Dokumenttyp: | Article (Journal) Kapitel/Artikel |
| Sprache: | Englisch |
| Veröffentlicht: |
2013
|
| In: |
Arxiv
|
| Online-Zugang: | Verlag, kostenfrei, Volltext: http://arxiv.org/abs/1209.3317 |
| Verfasserangaben: | Tilman Enss |
| Zusammenfassung: | Fermi gases with short-range interactions are ubiquitous in ultracold atomic systems. In the absence of spin-flipping processes the number of atoms in each spin species is conserved separately, and we discuss the associated Ward identities. For contact interactions the spin conductivity spectral function sigma_s(omega) has universal power-law tails at high frequency. We derive the spin f-sum rule and show that it is not affected by these tails in d<4 dimensions. Likewise the shear viscosity spectral function eta(omega) has universal tails; in contrast they modify the viscosity sum rule in a characteristic way. |
|---|---|
| Beschreibung: | Gesehen am 23.11.2017 |
| Beschreibung: | Online Resource |