Hydrodynamic collective modes for cold trapped gases

We suggest that collective oscillation frequencies of cold trapped gases can be used to test predictions from quantum many-body physics. Our motivation lies in both rigid experimental tests of theoretical calculations and a possible improvement of measurements of particle number, chemical potential...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Böttcher, Igor (VerfasserIn) , Flörchinger, Stefan (VerfasserIn) , Wetterich, Christof (VerfasserIn)
Dokumenttyp: Article (Journal)
Sprache:Englisch
Veröffentlicht: 18 November 2011
In: Journal of physics. B, Atomic, molecular and optical physics
Year: 2011, Jahrgang: 44, Heft: 23, Pages: 235301
ISSN:1361-6455
DOI:10.1088/0953-4075/44/23/235301
Online-Zugang:Verlag, Volltext: http://dx.doi.org/10.1088/0953-4075/44/23/235301
Verlag, Volltext: http://stacks.iop.org/0953-4075/44/i=23/a=235301
Volltext
Verfasserangaben:I. Boettcher, S. Floerchinger and C. Wetterich
Beschreibung
Zusammenfassung:We suggest that collective oscillation frequencies of cold trapped gases can be used to test predictions from quantum many-body physics. Our motivation lies in both rigid experimental tests of theoretical calculations and a possible improvement of measurements of particle number, chemical potential or temperature. We calculate the effects of interaction, dimensionality and thermal fluctuations on the collective modes of a dilute Bose gas in the hydrodynamic limit. The underlying equation of state is provided by the non-perturbative Functional Renormalization Group or by Lee-Yang theory. The spectrum of oscillation frequencies could be measured by response techniques. Our findings are generalized to bosonic or fermionic quantum gases with an arbitrary equation of state in the two-fluid hydrodynamic regime. For any given equation of state P (μ, T ) and normal fluid density n n (μ, T ), the collective oscillation frequencies in a d -dimensional isotropic potential are found to be the eigenvalues of an ordinary differential operator. We suggest a method of numerical solution and discuss the zero-temperature limit. Exact results are provided for harmonic traps and certain special forms of the equation of state. We also present a phenomenological treatment of dissipation effects and discuss the possibility of exciting the different eigenmodes individually.
Beschreibung:Gesehen am 27.11.2017
Beschreibung:Online Resource
ISSN:1361-6455
DOI:10.1088/0953-4075/44/23/235301