Flat monodromies and a moduli space size conjecture
We investigate how super-Planckian axions can arise when type IIB 3-form flux is used to restrict a two-axion field space to a one-dimensional winding trajectory. If one does not attempt to address notoriously complicated issues like Kahler moduli stabilization, SUSY-breaking and inflation, this can...
Gespeichert in:
| Hauptverfasser: | , , |
|---|---|
| Dokumenttyp: | Article (Journal) Kapitel/Artikel |
| Sprache: | Englisch |
| Veröffentlicht: |
2017
|
| In: |
Arxiv
|
| Online-Zugang: | Verlag, kostenfrei, Volltext: http://arxiv.org/abs/1708.06761 |
| Verfasserangaben: | Arthur Hebecker, Philipp Henkenjohann, and Lukas T. Witkowski |
MARC
| LEADER | 00000caa a2200000 c 4500 | ||
|---|---|---|---|
| 001 | 1565761405 | ||
| 003 | DE-627 | ||
| 005 | 20220814032442.0 | ||
| 007 | cr uuu---uuuuu | ||
| 008 | 171128s2017 xx |||||o 00| ||eng c | ||
| 035 | |a (DE-627)1565761405 | ||
| 035 | |a (DE-576)495761400 | ||
| 035 | |a (DE-599)BSZ495761400 | ||
| 035 | |a (OCoLC)1340982689 | ||
| 040 | |a DE-627 |b ger |c DE-627 |e rda | ||
| 041 | |a eng | ||
| 084 | |a 29 |2 sdnb | ||
| 100 | 1 | |a Hebecker, Arthur |d 1968- |e VerfasserIn |0 (DE-588)1020241667 |0 (DE-627)688104770 |0 (DE-576)359736831 |4 aut | |
| 245 | 1 | 0 | |a Flat monodromies and a moduli space size conjecture |c Arthur Hebecker, Philipp Henkenjohann, and Lukas T. Witkowski |
| 264 | 1 | |c 2017 | |
| 300 | |a 33 | ||
| 336 | |a Text |b txt |2 rdacontent | ||
| 337 | |a Computermedien |b c |2 rdamedia | ||
| 338 | |a Online-Ressource |b cr |2 rdacarrier | ||
| 500 | |a Gesehen am 28.11.2017 | ||
| 520 | |a We investigate how super-Planckian axions can arise when type IIB 3-form flux is used to restrict a two-axion field space to a one-dimensional winding trajectory. If one does not attempt to address notoriously complicated issues like Kahler moduli stabilization, SUSY-breaking and inflation, this can be done very explicitly. We show that the presence of flux generates flat monodromies in the moduli space which we therefore call 'Monodromic Moduli Space'. While we do indeed find long axionic trajectories, these are non-geodesic. Moreover, the length of geodesics remains highly constrained, in spite of the (finite) monodromy group introduced by the flux. We attempt to formulate this in terms of a 'Moduli Space Size Conjecture'. Interesting mathematical structures arise in that the relevant spaces turn out to be fundamental domains of congruence subgroups of the modular group. In addition, new perspectives on inflation in string theory emerge. | ||
| 650 | 4 | |a High Energy Physics - Phenomenology | |
| 650 | 4 | |a High Energy Physics - Theory | |
| 700 | 1 | |a Henkenjohann, Philipp |d 1992- |e VerfasserIn |0 (DE-588)1140493590 |0 (DE-627)898499046 |0 (DE-576)493810757 |4 aut | |
| 700 | 1 | |a Witkowski, Lukas T. |d 1985- |e VerfasserIn |0 (DE-588)1057937428 |0 (DE-627)795549180 |0 (DE-576)413901726 |4 aut | |
| 773 | 0 | 8 | |i Enthalten in |t Arxiv |d Ithaca, NY : Cornell University, 1991 |g (2017) Artikel-Nummer 1708.06761, 33 Seiten |h Online-Ressource |w (DE-627)509006531 |w (DE-600)2225896-6 |w (DE-576)28130436X |7 nnas |a Flat monodromies and a moduli space size conjecture |
| 773 | 1 | 8 | |g year:2017 |g extent:33 |a Flat monodromies and a moduli space size conjecture |
| 856 | 4 | 0 | |u http://arxiv.org/abs/1708.06761 |x Verlag |z kostenfrei |3 Volltext |
| 951 | |a AR | ||
| 992 | |a 20171128 | ||
| 993 | |a Article | ||
| 998 | |g 1057937428 |a Witkowski, Lukas T. |m 1057937428:Witkowski, Lukas T. |p 3 |y j | ||
| 998 | |g 1140493590 |a Henkenjohann, Philipp |m 1140493590:Henkenjohann, Philipp |d 130000 |e 130000PH1140493590 |k 0/130000/ |p 2 | ||
| 998 | |g 1020241667 |a Hebecker, Arthur |m 1020241667:Hebecker, Arthur |d 130000 |d 130300 |e 130000PH1020241667 |e 130300PH1020241667 |k 0/130000/ |k 1/130000/130300/ |p 1 |x j | ||
| 999 | |a KXP-PPN1565761405 |e 2988335117 | ||
| BIB | |a Y | ||
| JSO | |a {"language":["eng"],"type":{"media":"Online-Ressource","bibl":"chapter"},"origin":[{"dateIssuedKey":"2017","dateIssuedDisp":"2017"}],"relHost":[{"disp":"Flat monodromies and a moduli space size conjectureArxiv","note":["Gesehen am 28.05.2024"],"id":{"zdb":["2225896-6"],"eki":["509006531"]},"title":[{"title":"Arxiv","title_sort":"Arxiv"}],"origin":[{"dateIssuedKey":"1991","publisherPlace":"Ithaca, NY ; [Erscheinungsort nicht ermittelbar]","dateIssuedDisp":"1991-","publisher":"Cornell University ; Arxiv.org"}],"type":{"bibl":"edited-book","media":"Online-Ressource"},"language":["eng"],"physDesc":[{"extent":"Online-Ressource"}],"part":{"text":"(2017) Artikel-Nummer 1708.06761, 33 Seiten","extent":"33","year":"2017"},"recId":"509006531","titleAlt":[{"title":"Arxiv.org"},{"title":"Arxiv.org e-print archive"},{"title":"Arxiv e-print archive"},{"title":"De.arxiv.org"}],"pubHistory":["1991 -"]}],"physDesc":[{"extent":"33 S."}],"person":[{"role":"aut","display":"Hebecker, Arthur","given":"Arthur","family":"Hebecker","roleDisplay":"VerfasserIn"},{"family":"Henkenjohann","roleDisplay":"VerfasserIn","display":"Henkenjohann, Philipp","role":"aut","given":"Philipp"},{"role":"aut","display":"Witkowski, Lukas T.","given":"Lukas T.","family":"Witkowski","roleDisplay":"VerfasserIn"}],"name":{"displayForm":["Arthur Hebecker, Philipp Henkenjohann, and Lukas T. Witkowski"]},"note":["Gesehen am 28.11.2017"],"title":[{"title_sort":"Flat monodromies and a moduli space size conjecture","title":"Flat monodromies and a moduli space size conjecture"}],"id":{"eki":["1565761405"]},"recId":"1565761405"} | ||
| SRT | |a HEBECKERARFLATMONODR2017 | ||