Flat monodromies and a moduli space size conjecture

We investigate how super-Planckian axions can arise when type IIB 3-form flux is used to restrict a two-axion field space to a one-dimensional winding trajectory. If one does not attempt to address notoriously complicated issues like Kahler moduli stabilization, SUSY-breaking and inflation, this can...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Hebecker, Arthur (VerfasserIn) , Henkenjohann, Philipp (VerfasserIn) , Witkowski, Lukas T. (VerfasserIn)
Dokumenttyp: Article (Journal) Kapitel/Artikel
Sprache:Englisch
Veröffentlicht: 2017
In: Arxiv

Online-Zugang:Verlag, kostenfrei, Volltext: http://arxiv.org/abs/1708.06761
Volltext
Verfasserangaben:Arthur Hebecker, Philipp Henkenjohann, and Lukas T. Witkowski

MARC

LEADER 00000caa a2200000 c 4500
001 1565761405
003 DE-627
005 20220814032442.0
007 cr uuu---uuuuu
008 171128s2017 xx |||||o 00| ||eng c
035 |a (DE-627)1565761405 
035 |a (DE-576)495761400 
035 |a (DE-599)BSZ495761400 
035 |a (OCoLC)1340982689 
040 |a DE-627  |b ger  |c DE-627  |e rda 
041 |a eng 
084 |a 29  |2 sdnb 
100 1 |a Hebecker, Arthur  |d 1968-  |e VerfasserIn  |0 (DE-588)1020241667  |0 (DE-627)688104770  |0 (DE-576)359736831  |4 aut 
245 1 0 |a Flat monodromies and a moduli space size conjecture  |c Arthur Hebecker, Philipp Henkenjohann, and Lukas T. Witkowski 
264 1 |c 2017 
300 |a 33 
336 |a Text  |b txt  |2 rdacontent 
337 |a Computermedien  |b c  |2 rdamedia 
338 |a Online-Ressource  |b cr  |2 rdacarrier 
500 |a Gesehen am 28.11.2017 
520 |a We investigate how super-Planckian axions can arise when type IIB 3-form flux is used to restrict a two-axion field space to a one-dimensional winding trajectory. If one does not attempt to address notoriously complicated issues like Kahler moduli stabilization, SUSY-breaking and inflation, this can be done very explicitly. We show that the presence of flux generates flat monodromies in the moduli space which we therefore call 'Monodromic Moduli Space'. While we do indeed find long axionic trajectories, these are non-geodesic. Moreover, the length of geodesics remains highly constrained, in spite of the (finite) monodromy group introduced by the flux. We attempt to formulate this in terms of a 'Moduli Space Size Conjecture'. Interesting mathematical structures arise in that the relevant spaces turn out to be fundamental domains of congruence subgroups of the modular group. In addition, new perspectives on inflation in string theory emerge. 
650 4 |a High Energy Physics - Phenomenology 
650 4 |a High Energy Physics - Theory 
700 1 |a Henkenjohann, Philipp  |d 1992-  |e VerfasserIn  |0 (DE-588)1140493590  |0 (DE-627)898499046  |0 (DE-576)493810757  |4 aut 
700 1 |a Witkowski, Lukas T.  |d 1985-  |e VerfasserIn  |0 (DE-588)1057937428  |0 (DE-627)795549180  |0 (DE-576)413901726  |4 aut 
773 0 8 |i Enthalten in  |t Arxiv  |d Ithaca, NY : Cornell University, 1991  |g (2017) Artikel-Nummer 1708.06761, 33 Seiten  |h Online-Ressource  |w (DE-627)509006531  |w (DE-600)2225896-6  |w (DE-576)28130436X  |7 nnas  |a Flat monodromies and a moduli space size conjecture 
773 1 8 |g year:2017  |g extent:33  |a Flat monodromies and a moduli space size conjecture 
856 4 0 |u http://arxiv.org/abs/1708.06761  |x Verlag  |z kostenfrei  |3 Volltext 
951 |a AR 
992 |a 20171128 
993 |a Article 
998 |g 1057937428  |a Witkowski, Lukas T.  |m 1057937428:Witkowski, Lukas T.  |p 3  |y j 
998 |g 1140493590  |a Henkenjohann, Philipp  |m 1140493590:Henkenjohann, Philipp  |d 130000  |e 130000PH1140493590  |k 0/130000/  |p 2 
998 |g 1020241667  |a Hebecker, Arthur  |m 1020241667:Hebecker, Arthur  |d 130000  |d 130300  |e 130000PH1020241667  |e 130300PH1020241667  |k 0/130000/  |k 1/130000/130300/  |p 1  |x j 
999 |a KXP-PPN1565761405  |e 2988335117 
BIB |a Y 
JSO |a {"language":["eng"],"type":{"media":"Online-Ressource","bibl":"chapter"},"origin":[{"dateIssuedKey":"2017","dateIssuedDisp":"2017"}],"relHost":[{"disp":"Flat monodromies and a moduli space size conjectureArxiv","note":["Gesehen am 28.05.2024"],"id":{"zdb":["2225896-6"],"eki":["509006531"]},"title":[{"title":"Arxiv","title_sort":"Arxiv"}],"origin":[{"dateIssuedKey":"1991","publisherPlace":"Ithaca, NY ; [Erscheinungsort nicht ermittelbar]","dateIssuedDisp":"1991-","publisher":"Cornell University ; Arxiv.org"}],"type":{"bibl":"edited-book","media":"Online-Ressource"},"language":["eng"],"physDesc":[{"extent":"Online-Ressource"}],"part":{"text":"(2017) Artikel-Nummer 1708.06761, 33 Seiten","extent":"33","year":"2017"},"recId":"509006531","titleAlt":[{"title":"Arxiv.org"},{"title":"Arxiv.org e-print archive"},{"title":"Arxiv e-print archive"},{"title":"De.arxiv.org"}],"pubHistory":["1991 -"]}],"physDesc":[{"extent":"33 S."}],"person":[{"role":"aut","display":"Hebecker, Arthur","given":"Arthur","family":"Hebecker","roleDisplay":"VerfasserIn"},{"family":"Henkenjohann","roleDisplay":"VerfasserIn","display":"Henkenjohann, Philipp","role":"aut","given":"Philipp"},{"role":"aut","display":"Witkowski, Lukas T.","given":"Lukas T.","family":"Witkowski","roleDisplay":"VerfasserIn"}],"name":{"displayForm":["Arthur Hebecker, Philipp Henkenjohann, and Lukas T. Witkowski"]},"note":["Gesehen am 28.11.2017"],"title":[{"title_sort":"Flat monodromies and a moduli space size conjecture","title":"Flat monodromies and a moduli space size conjecture"}],"id":{"eki":["1565761405"]},"recId":"1565761405"} 
SRT |a HEBECKERARFLATMONODR2017