Thermal dynamics on the lattice with exponentially improved accuracy

We present a novel simulation prescription for thermal quantum fields on a lattice that operates directly in imaginary frequency space. By distinguishing initial conditions from quantum dynamics it provides access to correlation functions also outside of the conventional Matsubara frequencies $\omeg...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Pawlowski, Jan M. (VerfasserIn) , Rothkopf, Alexander (VerfasserIn)
Dokumenttyp: Article (Journal) Kapitel/Artikel
Sprache:Englisch
Veröffentlicht: 2016
In: Arxiv

Online-Zugang:Verlag, kostenfrei, Volltext: http://arxiv.org/abs/1610.09531
Volltext
Verfasserangaben:Jan Pawlowski, and Alexander Rothkopf
Beschreibung
Zusammenfassung:We present a novel simulation prescription for thermal quantum fields on a lattice that operates directly in imaginary frequency space. By distinguishing initial conditions from quantum dynamics it provides access to correlation functions also outside of the conventional Matsubara frequencies $\omega_n=2\pi n T$. In particular it resolves their frequency dependence between $\omega=0$ and $\omega_1=2\pi T$, where the thermal physics $\omega\sim T$ of e.g.~transport phenomena is dominantly encoded. Real-time spectral functions are related to these correlators via an integral transform with rational kernel, so their unfolding is exponentially improved compared to Euclidean simulations. We demonstrate this improvement within a $0+1$-dimensional scalar field theory and show that spectral features inaccessible in standard Euclidean simulations are quantitatively captured.
Beschreibung:Gesehen am 30.11.2017
Beschreibung:Online Resource