The two-exponential Liouville theory and the uniqueness of the three-point function
It is shown that in the two-exponential version of Liouville theory the coefficients of the three-point functions of vertex operators can be determined uniquely using the translational invariance of the path integral measure and the self-consistency of the two-point functions. The result agrees with...
Gespeichert in:
| Hauptverfasser: | , , |
|---|---|
| Dokumenttyp: | Article (Journal) |
| Sprache: | Englisch |
| Veröffentlicht: |
30 May 2000
|
| In: |
Physics letters
Year: 2000, Jahrgang: 481, Heft: 2, Pages: 436-444 |
| ISSN: | 1873-2445 |
| DOI: | 10.1016/S0370-2693(00)00448-2 |
| Online-Zugang: | Verlag, kostenfrei, Volltext: http://dx.doi.org/10.1016/S0370-2693(00)00448-2 |
| Verfasserangaben: | L. O'Raifeartaigh, J.M. Pawlowski, V.V. Sreedhar |
MARC
| LEADER | 00000caa a2200000 c 4500 | ||
|---|---|---|---|
| 001 | 1566092957 | ||
| 003 | DE-627 | ||
| 005 | 20220814040233.0 | ||
| 007 | cr uuu---uuuuu | ||
| 008 | 171206s2000 xx |||||o 00| ||eng c | ||
| 024 | 7 | |a 10.1016/S0370-2693(00)00448-2 |2 doi | |
| 035 | |a (DE-627)1566092957 | ||
| 035 | |a (DE-576)496092952 | ||
| 035 | |a (DE-599)BSZ496092952 | ||
| 035 | |a (OCoLC)1340983117 | ||
| 040 | |a DE-627 |b ger |c DE-627 |e rda | ||
| 041 | |a eng | ||
| 084 | |a 29 |2 sdnb | ||
| 100 | 1 | |a O'Raifeartaigh, Lochlainn |d 1933-2000 |e VerfasserIn |0 (DE-588)1089560362 |0 (DE-627)853349908 |0 (DE-576)459485164 |4 aut | |
| 245 | 1 | 4 | |a The two-exponential Liouville theory and the uniqueness of the three-point function |c L. O'Raifeartaigh, J.M. Pawlowski, V.V. Sreedhar |
| 264 | 1 | |c 30 May 2000 | |
| 300 | |a 9 | ||
| 336 | |a Text |b txt |2 rdacontent | ||
| 337 | |a Computermedien |b c |2 rdamedia | ||
| 338 | |a Online-Ressource |b cr |2 rdacarrier | ||
| 500 | |a Gesehen am 06.12.2017 | ||
| 520 | |a It is shown that in the two-exponential version of Liouville theory the coefficients of the three-point functions of vertex operators can be determined uniquely using the translational invariance of the path integral measure and the self-consistency of the two-point functions. The result agrees with that obtained using conformal bootstrap methods. Reflection symmetry and a previously conjectured relationship between the dimensional parameters of the theory and the overall scale are derived. | ||
| 700 | 1 | |a Pawlowski, Jan M. |d 1965- |e VerfasserIn |0 (DE-588)1047077388 |0 (DE-627)777525925 |0 (DE-576)400331381 |4 aut | |
| 700 | 1 | |a Sreedhar, Vinnakota |e VerfasserIn |0 (DE-588)1147981809 |0 (DE-627)1007473118 |0 (DE-576)496089811 |4 aut | |
| 773 | 0 | 8 | |i Enthalten in |t Physics letters |d Amsterdam : North-Holland Publ., 1967 |g 481(2000), 2, Seite 436-444 |h Online-Ressource |w (DE-627)266015360 |w (DE-600)1466612-1 |w (DE-576)07495993X |x 1873-2445 |7 nnas |a The two-exponential Liouville theory and the uniqueness of the three-point function |
| 773 | 1 | 8 | |g volume:481 |g year:2000 |g number:2 |g pages:436-444 |g extent:9 |a The two-exponential Liouville theory and the uniqueness of the three-point function |
| 856 | 4 | 0 | |u http://dx.doi.org/10.1016/S0370-2693(00)00448-2 |x Verlag |x Resolving-System |z kostenfrei |3 Volltext |
| 951 | |a AR | ||
| 992 | |a 20171206 | ||
| 993 | |a Article | ||
| 994 | |a 2000 | ||
| 998 | |g 1047077388 |a Pawlowski, Jan M. |m 1047077388:Pawlowski, Jan M. |p 2 | ||
| 999 | |a KXP-PPN1566092957 |e 298928463X | ||
| BIB | |a Y | ||
| SER | |a journal | ||
| JSO | |a {"type":{"media":"Online-Ressource","bibl":"article-journal"},"name":{"displayForm":["L. O'Raifeartaigh, J.M. Pawlowski, V.V. Sreedhar"]},"language":["eng"],"id":{"doi":["10.1016/S0370-2693(00)00448-2"],"eki":["1566092957"]},"physDesc":[{"extent":"9 S."}],"person":[{"display":"O'Raifeartaigh, Lochlainn","given":"Lochlainn","role":"aut","family":"O'Raifeartaigh"},{"family":"Pawlowski","role":"aut","given":"Jan M.","display":"Pawlowski, Jan M."},{"family":"Sreedhar","display":"Sreedhar, Vinnakota","given":"Vinnakota","role":"aut"}],"title":[{"title":"The two-exponential Liouville theory and the uniqueness of the three-point function","title_sort":"two-exponential Liouville theory and the uniqueness of the three-point function"}],"origin":[{"dateIssuedDisp":"30 May 2000","dateIssuedKey":"2000"}],"note":["Gesehen am 06.12.2017"],"relHost":[{"part":{"issue":"2","extent":"9","volume":"481","text":"481(2000), 2, Seite 436-444","pages":"436-444","year":"2000"},"title":[{"title":"Physics letters","title_sort":"Physics letters"}],"disp":"The two-exponential Liouville theory and the uniqueness of the three-point functionPhysics letters","physDesc":[{"extent":"Online-Ressource"}],"type":{"bibl":"periodical","media":"Online-Ressource"},"titleAlt":[{"title":"Physics letters / B"}],"id":{"issn":["1873-2445"],"eki":["266015360"],"zdb":["1466612-1"]},"language":["eng"],"recId":"266015360","origin":[{"publisherPlace":"Amsterdam","dateIssuedKey":"1967","dateIssuedDisp":"1967-","publisher":"North-Holland Publ."}],"note":["Gesehen am 24.06.24","Fortsetzung der Druck-Ausgabe","Ab 2014 mit durchgehender Heftzählung, die als Vol. bez. wird"],"pubHistory":["24.1967 - 727.2013; Vol. 728.2014 -"]}],"recId":"1566092957"} | ||
| SRT | |a ORAIFEARTATWOEXPONEN3020 | ||