The two-exponential Liouville theory and the uniqueness of the three-point function

It is shown that in the two-exponential version of Liouville theory the coefficients of the three-point functions of vertex operators can be determined uniquely using the translational invariance of the path integral measure and the self-consistency of the two-point functions. The result agrees with...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: O'Raifeartaigh, Lochlainn (VerfasserIn) , Pawlowski, Jan M. (VerfasserIn) , Sreedhar, Vinnakota (VerfasserIn)
Dokumenttyp: Article (Journal) Kapitel/Artikel
Sprache:Englisch
Veröffentlicht: 2000
In: Arxiv

Online-Zugang:Verlag, kostenfrei, Volltext: http://arxiv.org/abs/hep-th/0003247
Volltext
Verfasserangaben:L. O'Raifeartaigh, J.M. Pawlowski, and V.V. Sreedhar
Beschreibung
Zusammenfassung:It is shown that in the two-exponential version of Liouville theory the coefficients of the three-point functions of vertex operators can be determined uniquely using the translational invariance of the path integral measure and the self-consistency of the two-point functions. The result agrees with that obtained using conformal bootstrap methods. Reflection symmetry and a previously conjectured relationship between the dimensional parameters of the theory and the overall scale are derived.
Beschreibung:Gesehen am 06.12.2017
Beschreibung:Online Resource