Monopoles, Polyakov loops, and gauge fixing on the Torus
We consider pure Yang-Mills theory on the four torus. A set of non-Abelian transition functions which encompass all instanton sectors is presented. It is argued that these transition functions are a convenient starting point for gauge fixing. In particular, we give an extended Abelian projection wit...
Gespeichert in:
| Hauptverfasser: | , |
|---|---|
| Dokumenttyp: | Article (Journal) |
| Sprache: | Englisch |
| Veröffentlicht: |
15 April 2002
|
| In: |
Annals of physics
Year: 1998, Jahrgang: 269, Heft: 1, Pages: 26-50 |
| DOI: | 10.1006/aphy.1998.5841 |
| Online-Zugang: | Verlag, Volltext: http://dx.doi.org/10.1006/aphy.1998.5841 Verlag, Volltext: http://www.sciencedirect.com/science/article/pii/S0003491698958419 |
| Verfasserangaben: | C. Ford, U.G. Mitreuter, T. Tok, and A. Wipf, Theor-Phys.Universität Jena, Frobelstieg 1, D-07743 Jena, Germany and J.M. Pawlowski, Dublin Institute for Advanced Studies, 10 Burlington Road, Dublin 4,Ireland |
| Zusammenfassung: | We consider pure Yang-Mills theory on the four torus. A set of non-Abelian transition functions which encompass all instanton sectors is presented. It is argued that these transition functions are a convenient starting point for gauge fixing. In particular, we give an extended Abelian projection with respect to the Polyakov loop, whereA0is independent of time and in the Cartan subalgebra. In the non-perturbative sectors such gauge fixings are necessarily singular. These singularities can be restricted to Dirac strings joining monopole and anti-monopole like “defects”. |
|---|---|
| Beschreibung: | Gesehen am 07.12.2017 |
| Beschreibung: | Online Resource |
| DOI: | 10.1006/aphy.1998.5841 |