Finite element approximation of singular power-law systems

Non-Newtonian fluid motions are often modeled by a power-law ansatz. In the present paper, we consider shear thinning singular power-law models which feature an unbounded viscosity in the limit of zero shear rate, and we study the finite element (FE) discretization of the equations of motion. In the...

Full description

Saved in:
Bibliographic Details
Main Author: Hirn, Adrian (Author)
Format: Article (Journal)
Language:English
Published: January 18, 2013
In: Mathematics of computation
Year: 2013, Volume: 82, Issue: 283, Pages: 1247-1268
ISSN:1088-6842
DOI:10.1090/S0025-5718-2013-02668-3
Online Access:Verlag, kostenfrei, Volltext: http://dx.doi.org/10.1090/S0025-5718-2013-02668-3
Verlag, kostenfrei, Volltext: https://www.ams.org/mcom/2013-82-283/S0025-5718-2013-02668-3/
Verlag, kostenfrei, Volltext: http://www.ams.org/journals/mcom/2013-82-283/S0025-5718-2013-02668-3/S0025-5718-2013-02668-3.pdf
Get full text
Author Notes:Adrian Hirn

MARC

LEADER 00000caa a2200000 c 4500
001 1566139759
003 DE-627
005 20220814040846.0
007 cr uuu---uuuuu
008 171207s2013 xx |||||o 00| ||eng c
024 7 |a 10.1090/S0025-5718-2013-02668-3  |2 doi 
035 |a (DE-627)1566139759 
035 |a (DE-576)496139754 
035 |a (DE-599)BSZ496139754 
035 |a (OCoLC)1340982995 
040 |a DE-627  |b ger  |c DE-627  |e rda 
041 |a eng 
084 |a 27  |2 sdnb 
100 1 |a Hirn, Adrian  |e VerfasserIn  |0 (DE-588)1022361724  |0 (DE-627)716960087  |0 (DE-576)365277975  |4 aut 
245 1 0 |a Finite element approximation of singular power-law systems  |c Adrian Hirn 
264 1 |c January 18, 2013 
300 |a 22 
336 |a Text  |b txt  |2 rdacontent 
337 |a Computermedien  |b c  |2 rdamedia 
338 |a Online-Ressource  |b cr  |2 rdacarrier 
500 |a Gesehen am 07.12.2017 
520 |a Non-Newtonian fluid motions are often modeled by a power-law ansatz. In the present paper, we consider shear thinning singular power-law models which feature an unbounded viscosity in the limit of zero shear rate, and we study the finite element (FE) discretization of the equations of motion. In the case under consideration, numerical instabilities usually arise when the FE equations are solved via Newton's method. In this paper, we propose a numerical method that enables the stable approximation of singular power-law systems and that is based on a simple regularization of the power-law model. Our proposed method generates a sequence of discrete functions that is computable in practice via Newton's method and that converges to the exact solution of the power-law system for diminishing mesh size. First, for the regularized model we discuss Newton's method and we show its stability in the sense that we derive an upper bound for the condition number of the Newton matrix. Then, we prove a priori error estimates that quantify the convergence of the proposed method. Finally, we illustrate numerically that our regularized approximation method surpasses the nonregularized one regarding accuracy and numerical efficiency. 
650 4 |a error analysis 
650 4 |a finite element method 
650 4 |a Power-law fluid 
773 0 8 |i Enthalten in  |t Mathematics of computation  |d Providence, RI : Soc., 1960  |g 82(2013), 283, Seite 1247-1268  |h Online-Ressource  |w (DE-627)266882412  |w (DE-600)1468085-3  |w (DE-576)078589932  |x 1088-6842  |7 nnas  |a Finite element approximation of singular power-law systems 
773 1 8 |g volume:82  |g year:2013  |g number:283  |g pages:1247-1268  |g extent:22  |a Finite element approximation of singular power-law systems 
856 4 0 |u http://dx.doi.org/10.1090/S0025-5718-2013-02668-3  |x Verlag  |x Resolving-System  |z kostenfrei  |3 Volltext 
856 4 0 |u https://www.ams.org/mcom/2013-82-283/S0025-5718-2013-02668-3/  |x Verlag  |z kostenfrei  |3 Volltext 
856 4 0 |u http://www.ams.org/journals/mcom/2013-82-283/S0025-5718-2013-02668-3/S0025-5718-2013-02668-3.pdf  |x Verlag  |z kostenfrei  |3 Volltext 
951 |a AR 
992 |a 20171207 
993 |a Article 
994 |a 2013 
998 |g 1022361724  |a Hirn, Adrian  |m 1022361724:Hirn, Adrian  |d 110000  |d 110200  |d 110000  |d 110400  |e 110000PH1022361724  |e 110200PH1022361724  |e 110000PH1022361724  |e 110400PH1022361724  |k 0/110000/  |k 1/110000/110200/  |k 0/110000/  |k 1/110000/110400/  |p 1  |x j  |y j 
999 |a KXP-PPN1566139759  |e 2989474439 
BIB |a Y 
SER |a journal 
JSO |a {"relHost":[{"physDesc":[{"extent":"Online-Ressource"}],"name":{"displayForm":["American Mathematical Society"]},"origin":[{"publisherPlace":"Providence, RI","dateIssuedDisp":"1960-","publisher":"Soc.","dateIssuedKey":"1960"}],"id":{"eki":["266882412"],"zdb":["1468085-3"],"issn":["1088-6842"]},"type":{"media":"Online-Ressource","bibl":"periodical"},"note":["Gesehen am 20.11.20"],"disp":"Finite element approximation of singular power-law systemsMathematics of computation","recId":"266882412","language":["eng"],"pubHistory":["14.1960=Nr. 69 -"],"part":{"extent":"22","text":"82(2013), 283, Seite 1247-1268","volume":"82","issue":"283","pages":"1247-1268","year":"2013"},"title":[{"title_sort":"Mathematics of computation","title":"Mathematics of computation"}]}],"physDesc":[{"extent":"22 S."}],"name":{"displayForm":["Adrian Hirn"]},"id":{"eki":["1566139759"],"doi":["10.1090/S0025-5718-2013-02668-3"]},"origin":[{"dateIssuedKey":"2013","dateIssuedDisp":"January 18, 2013"}],"recId":"1566139759","language":["eng"],"type":{"media":"Online-Ressource","bibl":"article-journal"},"note":["Gesehen am 07.12.2017"],"person":[{"role":"aut","roleDisplay":"VerfasserIn","display":"Hirn, Adrian","given":"Adrian","family":"Hirn"}],"title":[{"title":"Finite element approximation of singular power-law systems","title_sort":"Finite element approximation of singular power-law systems"}]} 
SRT |a HIRNADRIANFINITEELEM1820