Mordell-Weil torsion and the global structure of gauge groups in F-theory

We study the global structure of the gauge group $G$ of F-theory compactified on an elliptic fibration $Y$. The global properties of $G$ are encoded in the torsion subgroup of the Mordell-Weil group of rational sections of $Y$. Generalising the Shioda map to torsional sections we construct a specifi...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Mayrhofer, Christoph (VerfasserIn) , Till, Oskar (VerfasserIn) , Weigand, Timo (VerfasserIn)
Dokumenttyp: Article (Journal) Kapitel/Artikel
Sprache:Englisch
Veröffentlicht: 2014
In: Arxiv

Online-Zugang:Verlag, kostenfrei, Volltext: http://arxiv.org/abs/1405.3656
Volltext
Verfasserangaben:Christoph Mayrhofer, David R. Morrison, Oskar Till and Timo Weigand

MARC

LEADER 00000caa a2200000 c 4500
001 1566524369
003 DE-627
005 20220814045944.0
007 cr uuu---uuuuu
008 171219s2014 xx |||||o 00| ||eng c
035 |a (DE-627)1566524369 
035 |a (DE-576)496524364 
035 |a (DE-599)BSZ496524364 
035 |a (OCoLC)1340983738 
040 |a DE-627  |b ger  |c DE-627  |e rda 
041 |a eng 
084 |a 29  |2 sdnb 
100 1 |a Mayrhofer, Christoph  |d 1980-  |e VerfasserIn  |0 (DE-588)1057937908  |0 (DE-627)795549962  |0 (DE-576)413895076  |4 aut 
245 1 0 |a Mordell-Weil torsion and the global structure of gauge groups in F-theory  |c Christoph Mayrhofer, David R. Morrison, Oskar Till and Timo Weigand 
264 1 |c 2014 
300 |a 43 
336 |a Text  |b txt  |2 rdacontent 
337 |a Computermedien  |b c  |2 rdamedia 
338 |a Online-Ressource  |b cr  |2 rdacarrier 
500 |a Gesehen am 19.12.2017 
520 |a We study the global structure of the gauge group $G$ of F-theory compactified on an elliptic fibration $Y$. The global properties of $G$ are encoded in the torsion subgroup of the Mordell-Weil group of rational sections of $Y$. Generalising the Shioda map to torsional sections we construct a specific integer divisor class on $Y$ as a fractional linear combination of the resolution divisors associated with the Cartan subalgebra of $G$. This divisor class can be interpreted as an element of the refined coweight lattice of the gauge group. As a result, the spectrum of admissible matter representations is strongly constrained and the gauge group is non-simply connected. We exemplify our results by a detailed analysis of the general elliptic fibration with Mordell-Weil group $\mathbb Z_2$ and $\mathbb Z_3$ as well as a further specialization to $\mathbb Z \oplus \mathbb Z_2$. Our analysis exploits the representation of these fibrations as hypersurfaces in toric geometry. 
650 4 |a High Energy Physics - Theory 
700 1 |a Till, Oskar  |d 1985-  |e VerfasserIn  |0 (DE-588)1095268163  |0 (DE-627)855944838  |0 (DE-576)462627713  |4 aut 
700 1 |a Weigand, Timo  |d 1979-  |e VerfasserIn  |0 (DE-588)131945610  |0 (DE-627)516190067  |0 (DE-576)298853256  |4 aut 
773 0 8 |i Enthalten in  |t Arxiv  |d Ithaca, NY : Cornell University, 1991  |g (2014) Artikel-Nummer 1405.3656, 43 Seiten  |h Online-Ressource  |w (DE-627)509006531  |w (DE-600)2225896-6  |w (DE-576)28130436X  |7 nnas  |a Mordell-Weil torsion and the global structure of gauge groups in F-theory 
773 1 8 |g year:2014  |g extent:43  |a Mordell-Weil torsion and the global structure of gauge groups in F-theory 
856 4 0 |u http://arxiv.org/abs/1405.3656  |x Verlag  |z kostenfrei  |3 Volltext 
951 |a AR 
992 |a 20171219 
993 |a Article 
998 |g 131945610  |a Weigand, Timo  |m 131945610:Weigand, Timo  |d 130000  |d 130300  |e 130000PW131945610  |e 130300PW131945610  |k 0/130000/  |k 1/130000/130300/  |p 4  |y j 
998 |g 1095268163  |a Till, Oskar  |m 1095268163:Till, Oskar  |d 130000  |d 130300  |e 130000PT1095268163  |e 130300PT1095268163  |k 0/130000/  |k 1/130000/130300/  |p 3 
998 |g 1057937908  |a Mayrhofer, Christoph  |m 1057937908:Mayrhofer, Christoph  |p 1  |x j 
999 |a KXP-PPN1566524369  |e 2990203141 
BIB |a Y 
JSO |a {"relHost":[{"physDesc":[{"extent":"Online-Ressource"}],"origin":[{"dateIssuedKey":"1991","publisher":"Cornell University ; Arxiv.org","dateIssuedDisp":"1991-","publisherPlace":"Ithaca, NY ; [Erscheinungsort nicht ermittelbar]"}],"id":{"eki":["509006531"],"zdb":["2225896-6"]},"disp":"Mordell-Weil torsion and the global structure of gauge groups in F-theoryArxiv","note":["Gesehen am 28.05.2024"],"type":{"media":"Online-Ressource","bibl":"edited-book"},"recId":"509006531","language":["eng"],"pubHistory":["1991 -"],"titleAlt":[{"title":"Arxiv.org"},{"title":"Arxiv.org e-print archive"},{"title":"Arxiv e-print archive"},{"title":"De.arxiv.org"}],"part":{"text":"(2014) Artikel-Nummer 1405.3656, 43 Seiten","extent":"43","year":"2014"},"title":[{"title":"Arxiv","title_sort":"Arxiv"}]}],"physDesc":[{"extent":"43 S."}],"name":{"displayForm":["Christoph Mayrhofer, David R. Morrison, Oskar Till and Timo Weigand"]},"id":{"eki":["1566524369"]},"origin":[{"dateIssuedDisp":"2014","dateIssuedKey":"2014"}],"recId":"1566524369","language":["eng"],"note":["Gesehen am 19.12.2017"],"type":{"media":"Online-Ressource","bibl":"chapter"},"person":[{"family":"Mayrhofer","given":"Christoph","display":"Mayrhofer, Christoph","roleDisplay":"VerfasserIn","role":"aut"},{"roleDisplay":"VerfasserIn","display":"Till, Oskar","role":"aut","family":"Till","given":"Oskar"},{"roleDisplay":"VerfasserIn","display":"Weigand, Timo","role":"aut","family":"Weigand","given":"Timo"}],"title":[{"title_sort":"Mordell-Weil torsion and the global structure of gauge groups in F-theory","title":"Mordell-Weil torsion and the global structure of gauge groups in F-theory"}]} 
SRT |a MAYRHOFERCMORDELLWEI2014