Mordell-Weil torsion and the global structure of gauge groups in F-theory
We study the global structure of the gauge group $G$ of F-theory compactified on an elliptic fibration $Y$. The global properties of $G$ are encoded in the torsion subgroup of the Mordell-Weil group of rational sections of $Y$. Generalising the Shioda map to torsional sections we construct a specifi...
Gespeichert in:
| Hauptverfasser: | , , |
|---|---|
| Dokumenttyp: | Article (Journal) Kapitel/Artikel |
| Sprache: | Englisch |
| Veröffentlicht: |
2014
|
| In: |
Arxiv
|
| Online-Zugang: | Verlag, kostenfrei, Volltext: http://arxiv.org/abs/1405.3656 |
| Verfasserangaben: | Christoph Mayrhofer, David R. Morrison, Oskar Till and Timo Weigand |
MARC
| LEADER | 00000caa a2200000 c 4500 | ||
|---|---|---|---|
| 001 | 1566524369 | ||
| 003 | DE-627 | ||
| 005 | 20220814045944.0 | ||
| 007 | cr uuu---uuuuu | ||
| 008 | 171219s2014 xx |||||o 00| ||eng c | ||
| 035 | |a (DE-627)1566524369 | ||
| 035 | |a (DE-576)496524364 | ||
| 035 | |a (DE-599)BSZ496524364 | ||
| 035 | |a (OCoLC)1340983738 | ||
| 040 | |a DE-627 |b ger |c DE-627 |e rda | ||
| 041 | |a eng | ||
| 084 | |a 29 |2 sdnb | ||
| 100 | 1 | |a Mayrhofer, Christoph |d 1980- |e VerfasserIn |0 (DE-588)1057937908 |0 (DE-627)795549962 |0 (DE-576)413895076 |4 aut | |
| 245 | 1 | 0 | |a Mordell-Weil torsion and the global structure of gauge groups in F-theory |c Christoph Mayrhofer, David R. Morrison, Oskar Till and Timo Weigand |
| 264 | 1 | |c 2014 | |
| 300 | |a 43 | ||
| 336 | |a Text |b txt |2 rdacontent | ||
| 337 | |a Computermedien |b c |2 rdamedia | ||
| 338 | |a Online-Ressource |b cr |2 rdacarrier | ||
| 500 | |a Gesehen am 19.12.2017 | ||
| 520 | |a We study the global structure of the gauge group $G$ of F-theory compactified on an elliptic fibration $Y$. The global properties of $G$ are encoded in the torsion subgroup of the Mordell-Weil group of rational sections of $Y$. Generalising the Shioda map to torsional sections we construct a specific integer divisor class on $Y$ as a fractional linear combination of the resolution divisors associated with the Cartan subalgebra of $G$. This divisor class can be interpreted as an element of the refined coweight lattice of the gauge group. As a result, the spectrum of admissible matter representations is strongly constrained and the gauge group is non-simply connected. We exemplify our results by a detailed analysis of the general elliptic fibration with Mordell-Weil group $\mathbb Z_2$ and $\mathbb Z_3$ as well as a further specialization to $\mathbb Z \oplus \mathbb Z_2$. Our analysis exploits the representation of these fibrations as hypersurfaces in toric geometry. | ||
| 650 | 4 | |a High Energy Physics - Theory | |
| 700 | 1 | |a Till, Oskar |d 1985- |e VerfasserIn |0 (DE-588)1095268163 |0 (DE-627)855944838 |0 (DE-576)462627713 |4 aut | |
| 700 | 1 | |a Weigand, Timo |d 1979- |e VerfasserIn |0 (DE-588)131945610 |0 (DE-627)516190067 |0 (DE-576)298853256 |4 aut | |
| 773 | 0 | 8 | |i Enthalten in |t Arxiv |d Ithaca, NY : Cornell University, 1991 |g (2014) Artikel-Nummer 1405.3656, 43 Seiten |h Online-Ressource |w (DE-627)509006531 |w (DE-600)2225896-6 |w (DE-576)28130436X |7 nnas |a Mordell-Weil torsion and the global structure of gauge groups in F-theory |
| 773 | 1 | 8 | |g year:2014 |g extent:43 |a Mordell-Weil torsion and the global structure of gauge groups in F-theory |
| 856 | 4 | 0 | |u http://arxiv.org/abs/1405.3656 |x Verlag |z kostenfrei |3 Volltext |
| 951 | |a AR | ||
| 992 | |a 20171219 | ||
| 993 | |a Article | ||
| 998 | |g 131945610 |a Weigand, Timo |m 131945610:Weigand, Timo |d 130000 |d 130300 |e 130000PW131945610 |e 130300PW131945610 |k 0/130000/ |k 1/130000/130300/ |p 4 |y j | ||
| 998 | |g 1095268163 |a Till, Oskar |m 1095268163:Till, Oskar |d 130000 |d 130300 |e 130000PT1095268163 |e 130300PT1095268163 |k 0/130000/ |k 1/130000/130300/ |p 3 | ||
| 998 | |g 1057937908 |a Mayrhofer, Christoph |m 1057937908:Mayrhofer, Christoph |p 1 |x j | ||
| 999 | |a KXP-PPN1566524369 |e 2990203141 | ||
| BIB | |a Y | ||
| JSO | |a {"relHost":[{"physDesc":[{"extent":"Online-Ressource"}],"origin":[{"dateIssuedKey":"1991","publisher":"Cornell University ; Arxiv.org","dateIssuedDisp":"1991-","publisherPlace":"Ithaca, NY ; [Erscheinungsort nicht ermittelbar]"}],"id":{"eki":["509006531"],"zdb":["2225896-6"]},"disp":"Mordell-Weil torsion and the global structure of gauge groups in F-theoryArxiv","note":["Gesehen am 28.05.2024"],"type":{"media":"Online-Ressource","bibl":"edited-book"},"recId":"509006531","language":["eng"],"pubHistory":["1991 -"],"titleAlt":[{"title":"Arxiv.org"},{"title":"Arxiv.org e-print archive"},{"title":"Arxiv e-print archive"},{"title":"De.arxiv.org"}],"part":{"text":"(2014) Artikel-Nummer 1405.3656, 43 Seiten","extent":"43","year":"2014"},"title":[{"title":"Arxiv","title_sort":"Arxiv"}]}],"physDesc":[{"extent":"43 S."}],"name":{"displayForm":["Christoph Mayrhofer, David R. Morrison, Oskar Till and Timo Weigand"]},"id":{"eki":["1566524369"]},"origin":[{"dateIssuedDisp":"2014","dateIssuedKey":"2014"}],"recId":"1566524369","language":["eng"],"note":["Gesehen am 19.12.2017"],"type":{"media":"Online-Ressource","bibl":"chapter"},"person":[{"family":"Mayrhofer","given":"Christoph","display":"Mayrhofer, Christoph","roleDisplay":"VerfasserIn","role":"aut"},{"roleDisplay":"VerfasserIn","display":"Till, Oskar","role":"aut","family":"Till","given":"Oskar"},{"roleDisplay":"VerfasserIn","display":"Weigand, Timo","role":"aut","family":"Weigand","given":"Timo"}],"title":[{"title_sort":"Mordell-Weil torsion and the global structure of gauge groups in F-theory","title":"Mordell-Weil torsion and the global structure of gauge groups in F-theory"}]} | ||
| SRT | |a MAYRHOFERCMORDELLWEI2014 | ||