Mordell-Weil torsion and the global structure of gauge groups in F-theory

We study the global structure of the gauge group $G$ of F-theory compactified on an elliptic fibration $Y$. The global properties of $G$ are encoded in the torsion subgroup of the Mordell-Weil group of rational sections of $Y$. Generalising the Shioda map to torsional sections we construct a specifi...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Mayrhofer, Christoph (VerfasserIn) , Till, Oskar (VerfasserIn) , Weigand, Timo (VerfasserIn)
Dokumenttyp: Article (Journal) Kapitel/Artikel
Sprache:Englisch
Veröffentlicht: 2014
In: Arxiv

Online-Zugang:Verlag, kostenfrei, Volltext: http://arxiv.org/abs/1405.3656
Volltext
Verfasserangaben:Christoph Mayrhofer, David R. Morrison, Oskar Till and Timo Weigand
Beschreibung
Zusammenfassung:We study the global structure of the gauge group $G$ of F-theory compactified on an elliptic fibration $Y$. The global properties of $G$ are encoded in the torsion subgroup of the Mordell-Weil group of rational sections of $Y$. Generalising the Shioda map to torsional sections we construct a specific integer divisor class on $Y$ as a fractional linear combination of the resolution divisors associated with the Cartan subalgebra of $G$. This divisor class can be interpreted as an element of the refined coweight lattice of the gauge group. As a result, the spectrum of admissible matter representations is strongly constrained and the gauge group is non-simply connected. We exemplify our results by a detailed analysis of the general elliptic fibration with Mordell-Weil group $\mathbb Z_2$ and $\mathbb Z_3$ as well as a further specialization to $\mathbb Z \oplus \mathbb Z_2$. Our analysis exploits the representation of these fibrations as hypersurfaces in toric geometry.
Beschreibung:Gesehen am 19.12.2017
Beschreibung:Online Resource