Upper bound on the Abelian gauge coupling from asymptotic safety

We explore the impact of asymptotically safe quantum gravity on the Abelian gauge coupling in a model including a charged scalar, confirming indications that asymptotically safe quantum fluctuations of gravity could trigger a power-law running towards a free fixed point for the gauge coupling above...

Full description

Saved in:
Bibliographic Details
Main Authors: Eichhorn, Astrid (Author) , Versteegen, Fleur (Author)
Format: Article (Journal) Chapter/Article
Language:English
Published: 2017
In: Arxiv

Online Access:Verlag, kostenfrei, Volltext: http://arxiv.org/abs/1709.07252
Get full text
Author Notes:Astrid Eichhorn, Fleur Versteegen
Description
Summary:We explore the impact of asymptotically safe quantum gravity on the Abelian gauge coupling in a model including a charged scalar, confirming indications that asymptotically safe quantum fluctuations of gravity could trigger a power-law running towards a free fixed point for the gauge coupling above the Planck scale. Simultaneously, quantum gravity fluctuations balance against matter fluctuations to generate an interacting fixed point, which acts as a boundary of the basin of attraction of the free fixed point. This enforces an upper bound on the infrared value of the Abelian gauge coupling. In the regime of gravity couplings which in our approximation also allows for a prediction of the top quark and Higgs mass close to the experimental value [1], we obtain an upper bound approximately 35% above the infrared value of the hypercharge coupling in the Standard Model.
Item Description:Gesehen am 11.01.2018
Physical Description:Online Resource