Generalized partially linear regression with misclassified data and an application to labour market transitions

Large data sets that originate from administrative or operational activity are increasingly used for statistical analysis as they often contain very precise information and a large number of observations. But there is evidence that some variables can be subject to severe misclassification or contain...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Dlugosz, Stephan (VerfasserIn) , Mammen, Enno (VerfasserIn) , Wilke, Ralf A. (VerfasserIn)
Dokumenttyp: Article (Journal)
Sprache:Englisch
Veröffentlicht: 27 January 2017
In: Computational statistics & data analysis
Year: 2017, Jahrgang: 110, Pages: 145-159
DOI:10.1016/j.csda.2017.01.003
Online-Zugang:Verlag, Volltext: http://dx.doi.org/10.1016/j.csda.2017.01.003
Verlag, Volltext: http://www.sciencedirect.com/science/article/pii/S0167947317300166
Volltext
Verfasserangaben:Stephan Dlugosz, Enno Mammen, Ralf A. Wilke

MARC

LEADER 00000caa a2200000 c 4500
001 1567162401
003 DE-627
005 20220814055847.0
007 cr uuu---uuuuu
008 180115s2017 xx |||||o 00| ||eng c
024 7 |a 10.1016/j.csda.2017.01.003  |2 doi 
035 |a (DE-627)1567162401 
035 |a (DE-576)497162407 
035 |a (DE-599)BSZ497162407 
035 |a (OCoLC)1340985592 
040 |a DE-627  |b ger  |c DE-627  |e rda 
041 |a eng 
084 |a 27  |2 sdnb 
100 1 |a Dlugosz, Stephan  |d 1978-  |e VerfasserIn  |0 (DE-588)136313817  |0 (DE-627)58327871X  |0 (DE-576)287039757  |4 aut 
245 1 0 |a Generalized partially linear regression with misclassified data and an application to labour market transitions  |c Stephan Dlugosz, Enno Mammen, Ralf A. Wilke 
264 1 |c 27 January 2017 
300 |a 15 
336 |a Text  |b txt  |2 rdacontent 
337 |a Computermedien  |b c  |2 rdamedia 
338 |a Online-Ressource  |b cr  |2 rdacarrier 
500 |a Gesehen am 15.01.2018 
520 |a Large data sets that originate from administrative or operational activity are increasingly used for statistical analysis as they often contain very precise information and a large number of observations. But there is evidence that some variables can be subject to severe misclassification or contain missing values. Given the size of the data, a flexible semiparametric misclassification model would be good choice but their use in practise is scarce. To close this gap a semiparametric model for the probability of observing labour market transitions is estimated using a sample of 20 m observations from Germany. It is shown that estimated marginal effects of a number of covariates are sizeably affected by misclassification and missing values in the analysis data. The proposed generalized partially linear regression extends existing models by allowing a misclassified discrete covariate to be interacted with a nonparametric function of a continuous covariate. 
650 4 |a Measurement error 
650 4 |a Semiparametric regression 
650 4 |a Side information 
700 1 |a Mammen, Enno  |d 1955-  |e VerfasserIn  |0 (DE-588)170668606  |0 (DE-627)060788658  |0 (DE-576)13153159X  |4 aut 
700 1 |a Wilke, Ralf A.  |e VerfasserIn  |0 (DE-588)124154395  |0 (DE-627)50302791X  |0 (DE-576)294043535  |4 aut 
773 0 8 |i Enthalten in  |t Computational statistics & data analysis  |d Amsterdam : Elsevier Science, 1983  |g 110(2017), Seite 145-159  |h Online-Ressource  |w (DE-627)27093815X  |w (DE-600)1478763-5  |w (DE-576)081952511  |7 nnas  |a Generalized partially linear regression with misclassified data and an application to labour market transitions 
773 1 8 |g volume:110  |g year:2017  |g pages:145-159  |g extent:15  |a Generalized partially linear regression with misclassified data and an application to labour market transitions 
856 4 0 |u http://dx.doi.org/10.1016/j.csda.2017.01.003  |x Verlag  |x Resolving-System  |3 Volltext 
856 4 0 |u http://www.sciencedirect.com/science/article/pii/S0167947317300166  |x Verlag  |3 Volltext 
951 |a AR 
992 |a 20180115 
993 |a Article 
994 |a 2017 
998 |g 170668606  |a Mammen, Enno  |m 170668606:Mammen, Enno  |d 110000  |d 110200  |d 110000  |d 110400  |e 110000PM170668606  |e 110200PM170668606  |e 110000PM170668606  |e 110400PM170668606  |k 0/110000/  |k 1/110000/110200/  |k 0/110000/  |k 1/110000/110400/  |p 2 
999 |a KXP-PPN1567162401  |e 2992845523 
BIB |a Y 
SER |a journal 
JSO |a {"name":{"displayForm":["Stephan Dlugosz, Enno Mammen, Ralf A. Wilke"]},"id":{"doi":["10.1016/j.csda.2017.01.003"],"eki":["1567162401"]},"origin":[{"dateIssuedKey":"2017","dateIssuedDisp":"27 January 2017"}],"relHost":[{"id":{"eki":["27093815X"],"zdb":["1478763-5"]},"origin":[{"dateIssuedDisp":"1983-","publisher":"Elsevier Science","dateIssuedKey":"1983","publisherPlace":"Amsterdam"}],"physDesc":[{"extent":"Online-Ressource"}],"title":[{"title":"Computational statistics & data analysis","title_sort":"Computational statistics & data analysis"}],"recId":"27093815X","language":["eng"],"note":["Gesehen am 06.01.2021"],"disp":"Generalized partially linear regression with misclassified data and an application to labour market transitionsComputational statistics & data analysis","type":{"bibl":"periodical","media":"Online-Ressource"},"part":{"text":"110(2017), Seite 145-159","volume":"110","extent":"15","year":"2017","pages":"145-159"},"pubHistory":["1.1983 - 56.2012; Vol. 57.2013 -"]}],"physDesc":[{"extent":"15 S."}],"person":[{"given":"Stephan","family":"Dlugosz","role":"aut","roleDisplay":"VerfasserIn","display":"Dlugosz, Stephan"},{"roleDisplay":"VerfasserIn","display":"Mammen, Enno","role":"aut","family":"Mammen","given":"Enno"},{"family":"Wilke","given":"Ralf A.","display":"Wilke, Ralf A.","roleDisplay":"VerfasserIn","role":"aut"}],"title":[{"title":"Generalized partially linear regression with misclassified data and an application to labour market transitions","title_sort":"Generalized partially linear regression with misclassified data and an application to labour market transitions"}],"language":["eng"],"recId":"1567162401","note":["Gesehen am 15.01.2018"],"type":{"media":"Online-Ressource","bibl":"article-journal"}} 
SRT |a DLUGOSZSTEGENERALIZE2720