Divergence-conforming discontinuous Galerkin methods and C0 interior penalty methods

In this paper, we show that recently developed divergence-conforming methods for the Stokes problem have discrete stream functions. These stream functions in turn solve a continuous interior penalty problem for biharmonic equations. The equivalence is established for the most common methods in two...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Kanschat, Guido (VerfasserIn) , Sharma, Natasha (VerfasserIn)
Dokumenttyp: Article (Journal)
Sprache:Englisch
Veröffentlicht: August 5, 2014
In: SIAM journal on numerical analysis
Year: 2014, Jahrgang: 52, Heft: 4, Pages: 1822-1842
ISSN:1095-7170
DOI:10.1137/120902975
Online-Zugang:Verlag, Volltext: http://dx.doi.org/10.1137/120902975
Verlag, Volltext: http://epubs.siam.org/doi/abs/10.1137/120902975
Volltext
Verfasserangaben:Guido Kanschat and Natasha Sharma

MARC

LEADER 00000caa a2200000 c 4500
001 1567507018
003 DE-627
005 20220814062228.0
007 cr uuu---uuuuu
008 180123s2014 xx |||||o 00| ||eng c
024 7 |a 10.1137/120902975  |2 doi 
035 |a (DE-627)1567507018 
035 |a (DE-576)497507013 
035 |a (DE-599)BSZ497507013 
035 |a (OCoLC)1340986219 
040 |a DE-627  |b ger  |c DE-627  |e rda 
041 |a eng 
084 |a 27  |2 sdnb 
100 1 |a Kanschat, Guido  |e VerfasserIn  |0 (DE-588)102535334X  |0 (DE-627)72215612X  |0 (DE-576)175755949  |4 aut 
245 1 0 |a Divergence-conforming discontinuous Galerkin methods and C0 interior penalty methods  |c Guido Kanschat and Natasha Sharma 
264 1 |c August 5, 2014 
300 |a 21 
336 |a Text  |b txt  |2 rdacontent 
337 |a Computermedien  |b c  |2 rdamedia 
338 |a Online-Ressource  |b cr  |2 rdacarrier 
500 |a Im Titel erscheint die 0 der Zeichenfolge C0 hochgestellt 
500 |a Gesehen am 23.01.2018 
520 |a In this paper, we show that recently developed divergence-conforming methods for the Stokes problem have discrete stream functions. These stream functions in turn solve a continuous interior penalty problem for biharmonic equations. The equivalence is established for the most common methods in two dimensions based on interior penalty terms. Then, extensions of the concept to discontinuous Galerkin methods defined through lifting operators, for different weak formulations of the Stokes problem, and to three dimensions are discussed. Application of the equivalence result yields an optimal error estimate for the Stokes velocity without involving the pressure. Conversely, combined with a recent multigrid method for Stokes flow, we obtain a simple and uniform preconditioner for harmonic problems with simply supported and clamped boundary. 
700 1 |a Sharma, Natasha  |e VerfasserIn  |0 (DE-588)1151139300  |0 (DE-627)1011374293  |0 (DE-576)497506807  |4 aut 
773 0 8 |i Enthalten in  |a Society for Industrial and Applied Mathematics  |t SIAM journal on numerical analysis  |d Philadelphia, Pa. : SIAM, 1966  |g 52(2014), 4, Seite 1822-1842  |h Online-Ressource  |w (DE-627)266885446  |w (DE-600)1468409-3  |w (DE-576)075961660  |x 1095-7170  |7 nnas 
773 1 8 |g volume:52  |g year:2014  |g number:4  |g pages:1822-1842  |g extent:21  |a Divergence-conforming discontinuous Galerkin methods and C0 interior penalty methods 
856 4 0 |u http://dx.doi.org/10.1137/120902975  |x Verlag  |x Resolving-System  |3 Volltext 
856 4 0 |u http://epubs.siam.org/doi/abs/10.1137/120902975  |x Verlag  |3 Volltext 
951 |a AR 
992 |a 20180123 
993 |a Article 
994 |a 2014 
998 |g 1151139300  |a Sharma, Natasha  |m 1151139300:Sharma, Natasha  |d 700000  |d 708000  |e 700000PS1151139300  |e 708000PS1151139300  |k 0/700000/  |k 1/700000/708000/  |p 2  |y j 
998 |g 102535334X  |a Kanschat, Guido  |m 102535334X:Kanschat, Guido  |d 700000  |d 708000  |e 700000PK102535334X  |e 708000PK102535334X  |k 0/700000/  |k 1/700000/708000/  |p 1  |x j 
999 |a KXP-PPN1567507018  |e 2993472240 
BIB |a Y 
SER |a journal 
JSO |a {"physDesc":[{"extent":"21 S."}],"relHost":[{"type":{"bibl":"periodical","media":"Online-Ressource"},"disp":"Society for Industrial and Applied MathematicsSIAM journal on numerical analysis","note":["Gesehen am 02.07.2021"],"recId":"266885446","corporate":[{"role":"aut","roleDisplay":"VerfasserIn","display":"Society for Industrial and Applied Mathematics"}],"language":["eng"],"pubHistory":["3.1966 -"],"titleAlt":[{"title":"Journal on numerical analysis"}],"part":{"year":"2014","pages":"1822-1842","issue":"4","volume":"52","text":"52(2014), 4, Seite 1822-1842","extent":"21"},"title":[{"title":"SIAM journal on numerical analysis","title_sort":"SIAM journal on numerical analysis"}],"physDesc":[{"extent":"Online-Ressource"}],"name":{"displayForm":["Society for Industrial and Applied Mathematics"]},"origin":[{"publisherPlace":"Philadelphia, Pa.","dateIssuedDisp":"1966-","publisher":"SIAM","dateIssuedKey":"1966"}],"id":{"issn":["1095-7170"],"eki":["266885446"],"zdb":["1468409-3"]}}],"origin":[{"dateIssuedDisp":"August 5, 2014","dateIssuedKey":"2014"}],"id":{"doi":["10.1137/120902975"],"eki":["1567507018"]},"name":{"displayForm":["Guido Kanschat and Natasha Sharma"]},"type":{"bibl":"article-journal","media":"Online-Ressource"},"note":["Im Titel erscheint die 0 der Zeichenfolge C0 hochgestellt","Gesehen am 23.01.2018"],"recId":"1567507018","language":["eng"],"title":[{"title_sort":"Divergence-conforming discontinuous Galerkin methods and C0 interior penalty methods","title":"Divergence-conforming discontinuous Galerkin methods and C0 interior penalty methods"}],"person":[{"given":"Guido","family":"Kanschat","role":"aut","display":"Kanschat, Guido","roleDisplay":"VerfasserIn"},{"given":"Natasha","family":"Sharma","role":"aut","roleDisplay":"VerfasserIn","display":"Sharma, Natasha"}]} 
SRT |a KANSCHATGUDIVERGENCE5201