Divergence-conforming discontinuous Galerkin methods and C0 interior penalty methods
In this paper, we show that recently developed divergence-conforming methods for the Stokes problem have discrete stream functions. These stream functions in turn solve a continuous interior penalty problem for biharmonic equations. The equivalence is established for the most common methods in two...
Gespeichert in:
| Hauptverfasser: | , |
|---|---|
| Dokumenttyp: | Article (Journal) |
| Sprache: | Englisch |
| Veröffentlicht: |
August 5, 2014
|
| In: |
SIAM journal on numerical analysis
Year: 2014, Jahrgang: 52, Heft: 4, Pages: 1822-1842 |
| ISSN: | 1095-7170 |
| DOI: | 10.1137/120902975 |
| Online-Zugang: | Verlag, Volltext: http://dx.doi.org/10.1137/120902975 Verlag, Volltext: http://epubs.siam.org/doi/abs/10.1137/120902975 |
| Verfasserangaben: | Guido Kanschat and Natasha Sharma |
MARC
| LEADER | 00000caa a2200000 c 4500 | ||
|---|---|---|---|
| 001 | 1567507018 | ||
| 003 | DE-627 | ||
| 005 | 20220814062228.0 | ||
| 007 | cr uuu---uuuuu | ||
| 008 | 180123s2014 xx |||||o 00| ||eng c | ||
| 024 | 7 | |a 10.1137/120902975 |2 doi | |
| 035 | |a (DE-627)1567507018 | ||
| 035 | |a (DE-576)497507013 | ||
| 035 | |a (DE-599)BSZ497507013 | ||
| 035 | |a (OCoLC)1340986219 | ||
| 040 | |a DE-627 |b ger |c DE-627 |e rda | ||
| 041 | |a eng | ||
| 084 | |a 27 |2 sdnb | ||
| 100 | 1 | |a Kanschat, Guido |e VerfasserIn |0 (DE-588)102535334X |0 (DE-627)72215612X |0 (DE-576)175755949 |4 aut | |
| 245 | 1 | 0 | |a Divergence-conforming discontinuous Galerkin methods and C0 interior penalty methods |c Guido Kanschat and Natasha Sharma |
| 264 | 1 | |c August 5, 2014 | |
| 300 | |a 21 | ||
| 336 | |a Text |b txt |2 rdacontent | ||
| 337 | |a Computermedien |b c |2 rdamedia | ||
| 338 | |a Online-Ressource |b cr |2 rdacarrier | ||
| 500 | |a Im Titel erscheint die 0 der Zeichenfolge C0 hochgestellt | ||
| 500 | |a Gesehen am 23.01.2018 | ||
| 520 | |a In this paper, we show that recently developed divergence-conforming methods for the Stokes problem have discrete stream functions. These stream functions in turn solve a continuous interior penalty problem for biharmonic equations. The equivalence is established for the most common methods in two dimensions based on interior penalty terms. Then, extensions of the concept to discontinuous Galerkin methods defined through lifting operators, for different weak formulations of the Stokes problem, and to three dimensions are discussed. Application of the equivalence result yields an optimal error estimate for the Stokes velocity without involving the pressure. Conversely, combined with a recent multigrid method for Stokes flow, we obtain a simple and uniform preconditioner for harmonic problems with simply supported and clamped boundary. | ||
| 700 | 1 | |a Sharma, Natasha |e VerfasserIn |0 (DE-588)1151139300 |0 (DE-627)1011374293 |0 (DE-576)497506807 |4 aut | |
| 773 | 0 | 8 | |i Enthalten in |a Society for Industrial and Applied Mathematics |t SIAM journal on numerical analysis |d Philadelphia, Pa. : SIAM, 1966 |g 52(2014), 4, Seite 1822-1842 |h Online-Ressource |w (DE-627)266885446 |w (DE-600)1468409-3 |w (DE-576)075961660 |x 1095-7170 |7 nnas |
| 773 | 1 | 8 | |g volume:52 |g year:2014 |g number:4 |g pages:1822-1842 |g extent:21 |a Divergence-conforming discontinuous Galerkin methods and C0 interior penalty methods |
| 856 | 4 | 0 | |u http://dx.doi.org/10.1137/120902975 |x Verlag |x Resolving-System |3 Volltext |
| 856 | 4 | 0 | |u http://epubs.siam.org/doi/abs/10.1137/120902975 |x Verlag |3 Volltext |
| 951 | |a AR | ||
| 992 | |a 20180123 | ||
| 993 | |a Article | ||
| 994 | |a 2014 | ||
| 998 | |g 1151139300 |a Sharma, Natasha |m 1151139300:Sharma, Natasha |d 700000 |d 708000 |e 700000PS1151139300 |e 708000PS1151139300 |k 0/700000/ |k 1/700000/708000/ |p 2 |y j | ||
| 998 | |g 102535334X |a Kanschat, Guido |m 102535334X:Kanschat, Guido |d 700000 |d 708000 |e 700000PK102535334X |e 708000PK102535334X |k 0/700000/ |k 1/700000/708000/ |p 1 |x j | ||
| 999 | |a KXP-PPN1567507018 |e 2993472240 | ||
| BIB | |a Y | ||
| SER | |a journal | ||
| JSO | |a {"physDesc":[{"extent":"21 S."}],"relHost":[{"type":{"bibl":"periodical","media":"Online-Ressource"},"disp":"Society for Industrial and Applied MathematicsSIAM journal on numerical analysis","note":["Gesehen am 02.07.2021"],"recId":"266885446","corporate":[{"role":"aut","roleDisplay":"VerfasserIn","display":"Society for Industrial and Applied Mathematics"}],"language":["eng"],"pubHistory":["3.1966 -"],"titleAlt":[{"title":"Journal on numerical analysis"}],"part":{"year":"2014","pages":"1822-1842","issue":"4","volume":"52","text":"52(2014), 4, Seite 1822-1842","extent":"21"},"title":[{"title":"SIAM journal on numerical analysis","title_sort":"SIAM journal on numerical analysis"}],"physDesc":[{"extent":"Online-Ressource"}],"name":{"displayForm":["Society for Industrial and Applied Mathematics"]},"origin":[{"publisherPlace":"Philadelphia, Pa.","dateIssuedDisp":"1966-","publisher":"SIAM","dateIssuedKey":"1966"}],"id":{"issn":["1095-7170"],"eki":["266885446"],"zdb":["1468409-3"]}}],"origin":[{"dateIssuedDisp":"August 5, 2014","dateIssuedKey":"2014"}],"id":{"doi":["10.1137/120902975"],"eki":["1567507018"]},"name":{"displayForm":["Guido Kanschat and Natasha Sharma"]},"type":{"bibl":"article-journal","media":"Online-Ressource"},"note":["Im Titel erscheint die 0 der Zeichenfolge C0 hochgestellt","Gesehen am 23.01.2018"],"recId":"1567507018","language":["eng"],"title":[{"title_sort":"Divergence-conforming discontinuous Galerkin methods and C0 interior penalty methods","title":"Divergence-conforming discontinuous Galerkin methods and C0 interior penalty methods"}],"person":[{"given":"Guido","family":"Kanschat","role":"aut","display":"Kanschat, Guido","roleDisplay":"VerfasserIn"},{"given":"Natasha","family":"Sharma","role":"aut","roleDisplay":"VerfasserIn","display":"Sharma, Natasha"}]} | ||
| SRT | |a KANSCHATGUDIVERGENCE5201 | ||