Asymptotic PN-equivalent SN+1 equations

The 1-D one-speed slab-geometry P N equations with isotropic scattering can be modified via an alternative moment closure to preserve the two asymptotic eigenmodes associated with the transport equation. Pomraning referred to these equations as the asymptotic P N equations. It is well-known that the...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Morel, Jim E. (VerfasserIn) , Ragusa, Jean C. (VerfasserIn) , Adams, M. L. (VerfasserIn) , Kanschat, Guido (VerfasserIn)
Dokumenttyp: Article (Journal)
Sprache:Englisch
Veröffentlicht: 07 Oct 2013
In: Transport theory and statistical physics
Year: 2013, Jahrgang: 42, Heft: 1, Pages: 3-20
ISSN:1532-2424
DOI:10.1080/00411450.2013.771366
Online-Zugang:Verlag, Volltext: http://dx.doi.org/10.1080/00411450.2013.771366
Volltext
Verfasserangaben:J. E. Morel, J. C. Ragusa, M. L. Adams, G. Kanschat

MARC

LEADER 00000caa a2200000 c 4500
001 1567565948
003 DE-627
005 20220814062845.0
007 cr uuu---uuuuu
008 180124s2013 xx |||||o 00| ||eng c
024 7 |a 10.1080/00411450.2013.771366  |2 doi 
035 |a (DE-627)1567565948 
035 |a (DE-576)497565943 
035 |a (DE-599)BSZ497565943 
035 |a (OCoLC)1340986265 
040 |a DE-627  |b ger  |c DE-627  |e rda 
041 |a eng 
084 |a 27  |2 sdnb 
100 1 |a Morel, Jim E.  |e VerfasserIn  |0 (DE-627)1395016615  |0 (DE-576)325016615  |4 aut 
245 1 0 |a Asymptotic PN-equivalent SN+1 equations  |c J. E. Morel, J. C. Ragusa, M. L. Adams, G. Kanschat 
264 1 |c  07 Oct 2013 
300 |a 18 
336 |a Text  |b txt  |2 rdacontent 
337 |a Computermedien  |b c  |2 rdamedia 
338 |a Online-Ressource  |b cr  |2 rdacarrier 
500 |a Im Titel sind die Zeichen N und N+1 tiefgestellt 
500 |a Gesehen am 24.01.2018 
520 |a The 1-D one-speed slab-geometry P N equations with isotropic scattering can be modified via an alternative moment closure to preserve the two asymptotic eigenmodes associated with the transport equation. Pomraning referred to these equations as the asymptotic P N equations. It is well-known that the 1-D slab-geometry S N+1 equations with Gauss quadrature are equivalent to the standard P N equations. In this article, we first show that if any quadrature set meets a certain criterion, the corresponding S N+1 equations will be equivalent to a set of P N equations with a quadrature-dependent closure. We then derive a particular family of quadrature sets that make the S N+1 equations equivalent to the asymptotic P N equations. Next we theoretically demonstrate several of the properties of these sets, relate them to an existing family of quadratures, numerically generate several example quadrature sets, and give numerical results that confirm several of their theoretically predicted properties. 
650 4 |a asymptotic decay lengths 
650 4 |a PN equations 
650 4 |a SN equations 
700 1 |a Ragusa, Jean C.  |e VerfasserIn  |0 (DE-627)1567499864  |0 (DE-576)49749986X  |4 aut 
700 1 |a Adams, M. L.  |e VerfasserIn  |4 aut 
700 1 |a Kanschat, Guido  |e VerfasserIn  |0 (DE-588)102535334X  |0 (DE-627)72215612X  |0 (DE-576)175755949  |4 aut 
773 0 8 |i Enthalten in  |t Transport theory and statistical physics  |d Philadelphia, Pa. : Taylor & Francis, 1971  |g 42(2013), 1, Seite 3-20  |h Online-Ressource  |w (DE-627)326041443  |w (DE-600)2041703-2  |w (DE-576)263253988  |x 1532-2424  |7 nnas  |a Asymptotic PN-equivalent SN+1 equations 
773 1 8 |g volume:42  |g year:2013  |g number:1  |g pages:3-20  |g extent:18  |a Asymptotic PN-equivalent SN+1 equations 
856 4 0 |u http://dx.doi.org/10.1080/00411450.2013.771366  |x Verlag  |x Resolving-System  |3 Volltext 
951 |a AR 
992 |a 20180124 
993 |a Article 
994 |a 2013 
998 |g 102535334X  |a Kanschat, Guido  |m 102535334X:Kanschat, Guido  |d 700000  |d 708000  |e 700000PK102535334X  |e 708000PK102535334X  |k 0/700000/  |k 1/700000/708000/  |p 4  |y j 
999 |a KXP-PPN1567565948  |e 2993816721 
BIB |a Y 
SER |a journal 
JSO |a {"physDesc":[{"extent":"18 S."}],"person":[{"family":"Morel","given":"Jim E.","role":"aut","display":"Morel, Jim E."},{"given":"Jean C.","family":"Ragusa","display":"Ragusa, Jean C.","role":"aut"},{"display":"Adams, M. L.","role":"aut","given":"M. L.","family":"Adams"},{"family":"Kanschat","given":"Guido","role":"aut","display":"Kanschat, Guido"}],"title":[{"title_sort":"Asymptotic PN-equivalent SN+1 equations","title":"Asymptotic PN-equivalent SN+1 equations"}],"relHost":[{"recId":"326041443","pubHistory":["1.1971 - 42.2013"],"id":{"zdb":["2041703-2"],"issn":["1532-2424"],"eki":["326041443"]},"origin":[{"publisherPlace":"Philadelphia, Pa. ; New York, NY","dateIssuedKey":"1971","publisher":"Taylor & Francis ; Dekker","dateIssuedDisp":"1971-2013"}],"note":["Gesehen am 30.07.14"],"physDesc":[{"extent":"Online-Ressource"}],"disp":"Asymptotic PN-equivalent SN+1 equationsTransport theory and statistical physics","language":["eng"],"type":{"media":"Online-Ressource","bibl":"periodical"},"part":{"issue":"1","text":"42(2013), 1, Seite 3-20","pages":"3-20","extent":"18","year":"2013","volume":"42"},"title":[{"title":"Transport theory and statistical physics","title_sort":"Transport theory and statistical physics"}]}],"origin":[{"dateIssuedDisp":" 07 Oct 2013","dateIssuedKey":"2013"}],"note":["Im Titel sind die Zeichen N und N+1 tiefgestellt","Gesehen am 24.01.2018"],"id":{"eki":["1567565948"],"doi":["10.1080/00411450.2013.771366"]},"name":{"displayForm":["J. E. Morel, J. C. Ragusa, M. L. Adams, G. Kanschat"]},"type":{"media":"Online-Ressource","bibl":"article-journal"},"language":["eng"],"recId":"1567565948"} 
SRT |a MORELJIMERASYMPTOTIC0720