Asymptotic PN-equivalent SN+1 equations
The 1-D one-speed slab-geometry P N equations with isotropic scattering can be modified via an alternative moment closure to preserve the two asymptotic eigenmodes associated with the transport equation. Pomraning referred to these equations as the asymptotic P N equations. It is well-known that the...
Gespeichert in:
| Hauptverfasser: | , , , |
|---|---|
| Dokumenttyp: | Article (Journal) |
| Sprache: | Englisch |
| Veröffentlicht: |
07 Oct 2013
|
| In: |
Transport theory and statistical physics
Year: 2013, Jahrgang: 42, Heft: 1, Pages: 3-20 |
| ISSN: | 1532-2424 |
| DOI: | 10.1080/00411450.2013.771366 |
| Online-Zugang: | Verlag, Volltext: http://dx.doi.org/10.1080/00411450.2013.771366 |
| Verfasserangaben: | J. E. Morel, J. C. Ragusa, M. L. Adams, G. Kanschat |
MARC
| LEADER | 00000caa a2200000 c 4500 | ||
|---|---|---|---|
| 001 | 1567565948 | ||
| 003 | DE-627 | ||
| 005 | 20220814062845.0 | ||
| 007 | cr uuu---uuuuu | ||
| 008 | 180124s2013 xx |||||o 00| ||eng c | ||
| 024 | 7 | |a 10.1080/00411450.2013.771366 |2 doi | |
| 035 | |a (DE-627)1567565948 | ||
| 035 | |a (DE-576)497565943 | ||
| 035 | |a (DE-599)BSZ497565943 | ||
| 035 | |a (OCoLC)1340986265 | ||
| 040 | |a DE-627 |b ger |c DE-627 |e rda | ||
| 041 | |a eng | ||
| 084 | |a 27 |2 sdnb | ||
| 100 | 1 | |a Morel, Jim E. |e VerfasserIn |0 (DE-627)1395016615 |0 (DE-576)325016615 |4 aut | |
| 245 | 1 | 0 | |a Asymptotic PN-equivalent SN+1 equations |c J. E. Morel, J. C. Ragusa, M. L. Adams, G. Kanschat |
| 264 | 1 | |c 07 Oct 2013 | |
| 300 | |a 18 | ||
| 336 | |a Text |b txt |2 rdacontent | ||
| 337 | |a Computermedien |b c |2 rdamedia | ||
| 338 | |a Online-Ressource |b cr |2 rdacarrier | ||
| 500 | |a Im Titel sind die Zeichen N und N+1 tiefgestellt | ||
| 500 | |a Gesehen am 24.01.2018 | ||
| 520 | |a The 1-D one-speed slab-geometry P N equations with isotropic scattering can be modified via an alternative moment closure to preserve the two asymptotic eigenmodes associated with the transport equation. Pomraning referred to these equations as the asymptotic P N equations. It is well-known that the 1-D slab-geometry S N+1 equations with Gauss quadrature are equivalent to the standard P N equations. In this article, we first show that if any quadrature set meets a certain criterion, the corresponding S N+1 equations will be equivalent to a set of P N equations with a quadrature-dependent closure. We then derive a particular family of quadrature sets that make the S N+1 equations equivalent to the asymptotic P N equations. Next we theoretically demonstrate several of the properties of these sets, relate them to an existing family of quadratures, numerically generate several example quadrature sets, and give numerical results that confirm several of their theoretically predicted properties. | ||
| 650 | 4 | |a asymptotic decay lengths | |
| 650 | 4 | |a PN equations | |
| 650 | 4 | |a SN equations | |
| 700 | 1 | |a Ragusa, Jean C. |e VerfasserIn |0 (DE-627)1567499864 |0 (DE-576)49749986X |4 aut | |
| 700 | 1 | |a Adams, M. L. |e VerfasserIn |4 aut | |
| 700 | 1 | |a Kanschat, Guido |e VerfasserIn |0 (DE-588)102535334X |0 (DE-627)72215612X |0 (DE-576)175755949 |4 aut | |
| 773 | 0 | 8 | |i Enthalten in |t Transport theory and statistical physics |d Philadelphia, Pa. : Taylor & Francis, 1971 |g 42(2013), 1, Seite 3-20 |h Online-Ressource |w (DE-627)326041443 |w (DE-600)2041703-2 |w (DE-576)263253988 |x 1532-2424 |7 nnas |a Asymptotic PN-equivalent SN+1 equations |
| 773 | 1 | 8 | |g volume:42 |g year:2013 |g number:1 |g pages:3-20 |g extent:18 |a Asymptotic PN-equivalent SN+1 equations |
| 856 | 4 | 0 | |u http://dx.doi.org/10.1080/00411450.2013.771366 |x Verlag |x Resolving-System |3 Volltext |
| 951 | |a AR | ||
| 992 | |a 20180124 | ||
| 993 | |a Article | ||
| 994 | |a 2013 | ||
| 998 | |g 102535334X |a Kanschat, Guido |m 102535334X:Kanschat, Guido |d 700000 |d 708000 |e 700000PK102535334X |e 708000PK102535334X |k 0/700000/ |k 1/700000/708000/ |p 4 |y j | ||
| 999 | |a KXP-PPN1567565948 |e 2993816721 | ||
| BIB | |a Y | ||
| SER | |a journal | ||
| JSO | |a {"physDesc":[{"extent":"18 S."}],"person":[{"family":"Morel","given":"Jim E.","role":"aut","display":"Morel, Jim E."},{"given":"Jean C.","family":"Ragusa","display":"Ragusa, Jean C.","role":"aut"},{"display":"Adams, M. L.","role":"aut","given":"M. L.","family":"Adams"},{"family":"Kanschat","given":"Guido","role":"aut","display":"Kanschat, Guido"}],"title":[{"title_sort":"Asymptotic PN-equivalent SN+1 equations","title":"Asymptotic PN-equivalent SN+1 equations"}],"relHost":[{"recId":"326041443","pubHistory":["1.1971 - 42.2013"],"id":{"zdb":["2041703-2"],"issn":["1532-2424"],"eki":["326041443"]},"origin":[{"publisherPlace":"Philadelphia, Pa. ; New York, NY","dateIssuedKey":"1971","publisher":"Taylor & Francis ; Dekker","dateIssuedDisp":"1971-2013"}],"note":["Gesehen am 30.07.14"],"physDesc":[{"extent":"Online-Ressource"}],"disp":"Asymptotic PN-equivalent SN+1 equationsTransport theory and statistical physics","language":["eng"],"type":{"media":"Online-Ressource","bibl":"periodical"},"part":{"issue":"1","text":"42(2013), 1, Seite 3-20","pages":"3-20","extent":"18","year":"2013","volume":"42"},"title":[{"title":"Transport theory and statistical physics","title_sort":"Transport theory and statistical physics"}]}],"origin":[{"dateIssuedDisp":" 07 Oct 2013","dateIssuedKey":"2013"}],"note":["Im Titel sind die Zeichen N und N+1 tiefgestellt","Gesehen am 24.01.2018"],"id":{"eki":["1567565948"],"doi":["10.1080/00411450.2013.771366"]},"name":{"displayForm":["J. E. Morel, J. C. Ragusa, M. L. Adams, G. Kanschat"]},"type":{"media":"Online-Ressource","bibl":"article-journal"},"language":["eng"],"recId":"1567565948"} | ||
| SRT | |a MORELJIMERASYMPTOTIC0720 | ||