Dual control and online optimal experimental design

Dual control refers to strategies that strike a balance between control and estimation. Combined with nonlinear model predictive control, dual control offers advanced feedback methods for optimal control problems under uncertainties. We present dual control from a new perspective, namely, the interp...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: La, Huu Chuong (VerfasserIn) , Potschka, Andreas (VerfasserIn) , Schlöder, Johannes P. (VerfasserIn) , Bock, Hans Georg (VerfasserIn)
Dokumenttyp: Article (Journal)
Sprache:Englisch
Veröffentlicht: July 13, 2017
In: SIAM journal on scientific computing
Year: 2017, Jahrgang: 39, Heft: 4, Pages: B640-B657
ISSN:1095-7197
DOI:10.1137/16M1069936
Online-Zugang:Verlag, Volltext: http://dx.doi.org/10.1137/16M1069936
Verlag, Volltext: http://epubs.siam.org/doi/abs/10.1137/16M1069936
Volltext
Verfasserangaben:H. La, A. Potschka, J. Schlöder, and H. Bock
Beschreibung
Zusammenfassung:Dual control refers to strategies that strike a balance between control and estimation. Combined with nonlinear model predictive control, dual control offers advanced feedback methods for optimal control problems under uncertainties. We present dual control from a new perspective, namely, the interplay between the performance control task and the information gain task in connection with optimal experimental design. A new approach to dual control is proposed in which the covariance matrix of the estimates is weighted by the derivatives of the nominal objective value with respect to unknown parameters and initial states.
Beschreibung:Gesehen am 29.01.2018
Beschreibung:Online Resource
ISSN:1095-7197
DOI:10.1137/16M1069936