Operational time and in-sample density forecasting

In this paper, we consider a new structural model for in-sample density forecasting. In-sample density forecasting is to estimate a structured density on a region where data are observed and then reuse the estimated structured density on some region where data are not observed. Our structural assump...

Full description

Saved in:
Bibliographic Details
Main Authors: Lee, Young K. (Author) , Mammen, Enno (Author) , Nielsen, Jens Perch (Author) , Park, Byeong U. (Author)
Format: Article (Journal)
Language:English
Published: 13 June 2017
In: The annals of statistics
Year: 2017, Volume: 45, Issue: 3, Pages: 1312-1341
ISSN:2168-8966
DOI:10.1214/16-AOS1486
Online Access:Verlag, kostenfrei, Volltext: http://dx.doi.org/10.1214/16-AOS1486
Verlag, kostenfrei, Volltext: https://projecteuclid.org/euclid.aos/1497319696
Verlag, kostenfrei, Volltext: https://projecteuclid.org/download/pdfview_1/euclid.aos/1497319696
Get full text
Author Notes:Young K. Lee, Enno Mammen, Jens P. Nielsen, Byeong U. Park

MARC

LEADER 00000caa a2200000 c 4500
001 1567801870
003 DE-627
005 20220814063712.0
007 cr uuu---uuuuu
008 180129s2017 xx |||||o 00| ||eng c
024 7 |a 10.1214/16-AOS1486  |2 doi 
035 |a (DE-627)1567801870 
035 |a (DE-576)497801876 
035 |a (DE-599)BSZ497801876 
035 |a (OCoLC)1340986169 
040 |a DE-627  |b ger  |c DE-627  |e rda 
041 |a eng 
084 |a 27  |2 sdnb 
100 1 |a Lee, Young K.  |e VerfasserIn  |0 (DE-588)1151596523  |0 (DE-627)1011939797  |0 (DE-576)424775522  |4 aut 
245 1 0 |a Operational time and in-sample density forecasting  |c Young K. Lee, Enno Mammen, Jens P. Nielsen, Byeong U. Park 
264 1 |c 13 June 2017 
300 |a 30 
336 |a Text  |b txt  |2 rdacontent 
337 |a Computermedien  |b c  |2 rdamedia 
338 |a Online-Ressource  |b cr  |2 rdacarrier 
500 |a Gesehen am 29.01.2018 
520 |a In this paper, we consider a new structural model for in-sample density forecasting. In-sample density forecasting is to estimate a structured density on a region where data are observed and then reuse the estimated structured density on some region where data are not observed. Our structural assumption is that the density is a product of one-dimensional functions with one function sitting on the scale of a transformed space of observations. The transformation involves another unknown one-dimensional function, so that our model is formulated via a known smooth function of three underlying unknown one-dimensional functions. We present an innovative way of estimating the one-dimensional functions and show that all the estimators of the three components achieve the optimal one-dimensional rate of convergence. We illustrate how one can use our approach by analyzing a real dataset, and also verify the tractable finite sample performance of the method via a simulation study. 
650 4 |a backfitting 
650 4 |a chain Ladder 
650 4 |a Density estimation 
650 4 |a kernel smoothing 
700 1 |a Mammen, Enno  |d 1955-  |e VerfasserIn  |0 (DE-588)170668606  |0 (DE-627)060788658  |0 (DE-576)13153159X  |4 aut 
700 1 |a Nielsen, Jens Perch  |e VerfasserIn  |0 (DE-588)171421698  |0 (DE-627)061621110  |0 (DE-576)132217368  |4 aut 
700 1 |a Park, Byeong U.  |e VerfasserIn  |0 (DE-588)170780023  |0 (DE-627)060912995  |0 (DE-576)131633414  |4 aut 
773 0 8 |i Enthalten in  |t The annals of statistics  |d Hayward, Calif. : IMS Business Off., 1973  |g 45(2017), 3, Seite 1312-1341  |h Online-Ressource  |w (DE-627)270129162  |w (DE-600)1476670-X  |w (DE-576)094425213  |x 2168-8966  |7 nnas  |a Operational time and in-sample density forecasting 
773 1 8 |g volume:45  |g year:2017  |g number:3  |g pages:1312-1341  |g extent:30  |a Operational time and in-sample density forecasting 
856 4 0 |u http://dx.doi.org/10.1214/16-AOS1486  |x Verlag  |x Resolving-System  |z kostenfrei  |3 Volltext 
856 4 0 |u https://projecteuclid.org/euclid.aos/1497319696  |x Verlag  |z kostenfrei  |3 Volltext 
856 4 0 |u https://projecteuclid.org/download/pdfview_1/euclid.aos/1497319696  |x Verlag  |z kostenfrei  |3 Volltext 
951 |a AR 
992 |a 20180129 
993 |a Article 
994 |a 2017 
998 |g 170668606  |a Mammen, Enno  |m 170668606:Mammen, Enno  |d 110000  |d 110200  |d 110000  |d 110400  |e 110000PM170668606  |e 110200PM170668606  |e 110000PM170668606  |e 110400PM170668606  |k 0/110000/  |k 1/110000/110200/  |k 0/110000/  |k 1/110000/110400/  |p 2 
999 |a KXP-PPN1567801870  |e 2994334321 
BIB |a Y 
SER |a journal 
JSO |a {"name":{"displayForm":["Young K. Lee, Enno Mammen, Jens P. Nielsen, Byeong U. Park"]},"origin":[{"dateIssuedDisp":"13 June 2017","dateIssuedKey":"2017"}],"language":["eng"],"recId":"1567801870","note":["Gesehen am 29.01.2018"],"type":{"media":"Online-Ressource","bibl":"article-journal"},"title":[{"title":"Operational time and in-sample density forecasting","title_sort":"Operational time and in-sample density forecasting"}],"relHost":[{"corporate":[{"display":"Institute of Mathematical Statistics","role":"isb"}],"id":{"zdb":["1476670-X"],"issn":["2168-8966"],"eki":["270129162"]},"type":{"media":"Online-Ressource","bibl":"periodical"},"title":[{"subtitle":"an official journal of the Institute of Mathematical Statistics","title_sort":"annals of statistics","title":"The annals of statistics"}],"physDesc":[{"extent":"Online-Ressource"}],"part":{"extent":"30","volume":"45","text":"45(2017), 3, Seite 1312-1341","year":"2017","pages":"1312-1341","issue":"3"},"disp":"Operational time and in-sample density forecastingThe annals of statistics","pubHistory":["1.1973 - 23.1995; 24.1996 -"],"recId":"270129162","note":["Gesehen am 08-06-21"],"language":["eng"],"origin":[{"publisher":"IMS Business Off.","dateIssuedDisp":"1973-","dateIssuedKey":"1973","publisherPlace":"Hayward, Calif."}]}],"physDesc":[{"extent":"30 S."}],"id":{"doi":["10.1214/16-AOS1486"],"eki":["1567801870"]},"person":[{"family":"Lee","display":"Lee, Young K.","role":"aut","given":"Young K."},{"role":"aut","given":"Enno","family":"Mammen","display":"Mammen, Enno"},{"role":"aut","given":"Jens Perch","family":"Nielsen","display":"Nielsen, Jens Perch"},{"given":"Byeong U.","role":"aut","display":"Park, Byeong U.","family":"Park"}]} 
SRT |a LEEYOUNGKMOPERATIONA1320