Correlation and marginal longitudinal kernel nonparametric regression

We consider nonparametric regression in a marginal longitudinal data framework. Previous work ([3]) has shown that the kernel nonparametric regression methods extant in the literature for such correlated data have the discouraging property that they generally do not improve upon methods that ignore...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Linton, Oliver (VerfasserIn) , Mammen, Enno (VerfasserIn) , Lin, Xihong (VerfasserIn) , Carroll, Raymond J. (VerfasserIn)
Dokumenttyp: Kapitel/Artikel Konferenzschrift
Sprache:Englisch
Veröffentlicht: 2004
In: Proceedings of the Second Seattle Symposium in Biostatistics
Year: 2004, Pages: 23-33
Online-Zugang:Verlag, Volltext: https://link.springer.com/chapter/10.1007/978-1-4419-9076-1_2
Volltext
Verfasserangaben:Oliver B. Linton, Enno Mammen, Xihong Lin, Raymond J. Carroll
Beschreibung
Zusammenfassung:We consider nonparametric regression in a marginal longitudinal data framework. Previous work ([3]) has shown that the kernel nonparametric regression methods extant in the literature for such correlated data have the discouraging property that they generally do not improve upon methods that ignore the correlation structure entirely. The latter methods are called working independence methods. We construct a two- stage kernel-based estimator that asymptotically uniformly improves upon the working independence estimator. A small simulation study is given in support of the asymptotics.
Beschreibung:Gesehen am 05.02.2018
Beschreibung:Online Resource
ISBN:9781441990761