Correlation and marginal longitudinal kernel nonparametric regression

We consider nonparametric regression in a marginal longitudinal data framework. Previous work ([3]) has shown that the kernel nonparametric regression methods extant in the literature for such correlated data have the discouraging property that they generally do not improve upon methods that ignore...

Full description

Saved in:
Bibliographic Details
Main Authors: Linton, Oliver (Author) , Mammen, Enno (Author) , Lin, Xihong (Author) , Carroll, Raymond J. (Author)
Format: Chapter/Article Conference Paper
Language:English
Published: 2004
In: Proceedings of the Second Seattle Symposium in Biostatistics
Year: 2004, Pages: 23-33
Online Access:Verlag, Volltext: https://link.springer.com/chapter/10.1007/978-1-4419-9076-1_2
Get full text
Author Notes:Oliver B. Linton, Enno Mammen, Xihong Lin, Raymond J. Carroll

MARC

LEADER 00000caa a2200000 c 4500
001 156808935X
003 DE-627
005 20220814065337.0
007 cr uuu---uuuuu
008 180205s2004 xx |||||o 00| ||eng c
024 7 |a 10.1007/978-1-4419-9076-1_2  |2 doi 
035 |a (DE-627)156808935X 
035 |a (DE-576)498089355 
035 |a (DE-599)BSZ498089355 
035 |a (OCoLC)1340986470 
040 |a DE-627  |b ger  |c DE-627  |e rda 
041 |a eng 
084 |a 27  |2 sdnb 
100 1 |a Linton, Oliver  |e VerfasserIn  |0 (DE-588)171218221  |0 (DE-627)061396729  |0 (DE-576)355701979  |4 aut 
245 1 0 |a Correlation and marginal longitudinal kernel nonparametric regression  |c Oliver B. Linton, Enno Mammen, Xihong Lin, Raymond J. Carroll 
264 1 |c 2004 
300 |a 11 
336 |a Text  |b txt  |2 rdacontent 
337 |a Computermedien  |b c  |2 rdamedia 
338 |a Online-Ressource  |b cr  |2 rdacarrier 
500 |a Gesehen am 05.02.2018 
520 |a We consider nonparametric regression in a marginal longitudinal data framework. Previous work ([3]) has shown that the kernel nonparametric regression methods extant in the literature for such correlated data have the discouraging property that they generally do not improve upon methods that ignore the correlation structure entirely. The latter methods are called working independence methods. We construct a two- stage kernel-based estimator that asymptotically uniformly improves upon the working independence estimator. A small simulation study is given in support of the asymptotics. 
700 1 |a Mammen, Enno  |d 1955-  |e VerfasserIn  |0 (DE-588)170668606  |0 (DE-627)060788658  |0 (DE-576)13153159X  |4 aut 
700 1 |a Lin, Xihong  |e VerfasserIn  |0 (DE-588)171897994  |0 (DE-627)363496386  |0 (DE-576)132653311  |4 aut 
700 1 |a Carroll, Raymond J.  |d 1949-  |e VerfasserIn  |0 (DE-588)111805708  |0 (DE-627)654710899  |0 (DE-576)338817077  |4 aut 
773 0 8 |i Enthalten in  |t Proceedings of the Second Seattle Symposium in Biostatistics  |d New York, NY : Springer, 2004  |g (2004), Seite 23-33  |h Online-Ressource (VII, 331 p, online resource)  |w (DE-627)1655423355  |w (DE-576)404686826  |z 9781441990761  |7 nnam  |a Correlation and marginal longitudinal kernel nonparametric regression 
773 1 8 |g year:2004  |g pages:23-33  |g extent:11  |a Correlation and marginal longitudinal kernel nonparametric regression 
776 0 8 |i Erscheint auch als  |n Druck-Ausgabe  |a Linton, Oliver  |t Correlation and marginal longitudinal kernel nonparametric regression  |d 2004  |w (DE-627)1568089899  |w (DE-576)498089894 
856 4 0 |u https://link.springer.com/chapter/10.1007/978-1-4419-9076-1_2  |x Verlag  |3 Volltext 
951 |a AR 
992 |a 20180205 
993 |a ConferencePaper 
994 |a 2004 
998 |g 170668606  |a Mammen, Enno  |m 170668606:Mammen, Enno  |p 2 
999 |a KXP-PPN156808935X  |e 2995267229 
BIB |a Y 
JSO |a {"name":{"displayForm":["Oliver B. Linton, Enno Mammen, Xihong Lin, Raymond J. Carroll"]},"origin":[{"dateIssuedDisp":"2004","dateIssuedKey":"2004"}],"recId":"156808935X","language":["eng"],"note":["Gesehen am 05.02.2018"],"person":[{"display":"Linton, Oliver","family":"Linton","given":"Oliver","role":"aut"},{"display":"Mammen, Enno","family":"Mammen","given":"Enno","role":"aut"},{"family":"Lin","display":"Lin, Xihong","role":"aut","given":"Xihong"},{"given":"Raymond J.","role":"aut","display":"Carroll, Raymond J.","family":"Carroll"}],"type":{"media":"Online-Ressource","bibl":"chapter"},"physDesc":[{"extent":"11 S."}],"relHost":[{"id":{"doi":["10.1007/978-1-4419-9076-1"],"eki":["1655423355"],"isbn":["9781441990761"]},"physDesc":[{"extent":"Online-Ressource (VII, 331 p, online resource)"}],"title":[{"title":"Proceedings of the Second Seattle Symposium in Biostatistics","title_sort":"Proceedings of the Second Seattle Symposium in Biostatistics","subtitle":"Analysis of Correlated Data"}],"type":{"bibl":"edited-book","media":"Online-Ressource"},"name":{"displayForm":["edited by D. Y. Lin, P. J. Heagerty"]},"person":[{"family":"Lin","display":"Lin, Danyu","role":"edt","given":"Danyu"},{"given":"P. J.","role":"edt","display":"Heagerty, P. J.","family":"Heagerty"}],"disp":"Correlation and marginal longitudinal kernel nonparametric regressionProceedings of the Second Seattle Symposium in Biostatistics","language":["eng"],"part":{"text":"(2004), Seite 23-33","year":"2004","extent":"11","pages":"23-33"},"recId":"1655423355","origin":[{"publisher":"Springer","dateIssuedDisp":"2004","dateIssuedKey":"2004","publisherPlace":"New York, NY"}]}],"title":[{"title":"Correlation and marginal longitudinal kernel nonparametric regression","title_sort":"Correlation and marginal longitudinal kernel nonparametric regression"}],"id":{"doi":["10.1007/978-1-4419-9076-1_2"],"eki":["156808935X"]}} 
SRT |a LINTONOLIVCORRELATIO2004