The horofunction compactification of Teichmüller spaces of surfaces with boundary

The arc metric is an asymmetric metric on the Teichmüller space T(S) of a surface S with nonempty boundary. It is the analogue of Thurston's metric on the Teichmüller space of a surface without boundary. In this paper we study the relation between Thurston's compactification and the horo...

Full description

Saved in:
Bibliographic Details
Main Author: Alessandrini, Daniele (Author)
Format: Article (Journal)
Language:English
Published: 25 May 2016
In: Topology and its applications
Year: 2016, Volume: 208, Pages: 160-191
DOI:10.1016/j.topol.2016.05.011
Online Access:Verlag, Volltext: http://dx.doi.org/10.1016/j.topol.2016.05.011
Verlag, Volltext: http://www.sciencedirect.com/science/article/pii/S016686411630092X
Get full text
Author Notes:D. Alessandrini, L. Liu, A. Papadopoulos, W. Su

MARC

LEADER 00000caa a2200000 c 4500
001 1569357102
003 DE-627
005 20220814071018.0
007 cr uuu---uuuuu
008 180209s2016 xx |||||o 00| ||eng c
024 7 |a 10.1016/j.topol.2016.05.011  |2 doi 
035 |a (DE-627)1569357102 
035 |a (DE-576)499357108 
035 |a (DE-599)BSZ499357108 
035 |a (OCoLC)1340986453 
040 |a DE-627  |b ger  |c DE-627  |e rda 
041 |a eng 
084 |a 27  |2 sdnb 
100 1 |a Alessandrini, Daniele  |e VerfasserIn  |0 (DE-588)1073901270  |0 (DE-627)829779280  |0 (DE-576)435393227  |4 aut 
245 1 4 |a The horofunction compactification of Teichmüller spaces of surfaces with boundary  |c D. Alessandrini, L. Liu, A. Papadopoulos, W. Su 
264 1 |c 25 May 2016 
300 |a 32 
336 |a Text  |b txt  |2 rdacontent 
337 |a Computermedien  |b c  |2 rdamedia 
338 |a Online-Ressource  |b cr  |2 rdacarrier 
500 |a Gesehen am 09.02.2018 
520 |a The arc metric is an asymmetric metric on the Teichmüller space T(S) of a surface S with nonempty boundary. It is the analogue of Thurston's metric on the Teichmüller space of a surface without boundary. In this paper we study the relation between Thurston's compactification and the horofunction compactification of T(S) endowed with the arc metric. We prove that there is a natural homeomorphism between the two compactifications. This generalizes a result of Walsh [20] that concerns Thurston's metric. 
650 4 |a Arc metric 
650 4 |a Horofunction 
650 4 |a Thurston's asymmetric metric 
650 4 |a Thurston's compactification 
773 0 8 |i Enthalten in  |t Topology and its applications  |d Amsterdam [u.a.] : Elsevier, 1980  |g 208(2016), Seite 160-191  |h Online-Ressource  |w (DE-627)306652862  |w (DE-600)1499758-7  |w (DE-576)081954425  |7 nnas  |a The horofunction compactification of Teichmüller spaces of surfaces with boundary 
773 1 8 |g volume:208  |g year:2016  |g pages:160-191  |g extent:32  |a The horofunction compactification of Teichmüller spaces of surfaces with boundary 
856 4 0 |u http://dx.doi.org/10.1016/j.topol.2016.05.011  |x Verlag  |x Resolving-System  |3 Volltext 
856 4 0 |u http://www.sciencedirect.com/science/article/pii/S016686411630092X  |x Verlag  |3 Volltext 
951 |a AR 
992 |a 20180209 
993 |a Article 
994 |a 2016 
998 |g 1073901270  |a Alessandrini, Daniele  |m 1073901270:Alessandrini, Daniele  |d 110000  |d 110100  |d 110000  |d 110400  |e 110000PA1073901270  |e 110100PA1073901270  |e 110000PA1073901270  |e 110400PA1073901270  |k 0/110000/  |k 1/110000/110100/  |k 0/110000/  |k 1/110000/110400/  |p 1  |x j 
999 |a KXP-PPN1569357102  |e 2997848784 
BIB |a Y 
SER |a journal 
JSO |a {"title":[{"title_sort":"horofunction compactification of Teichmüller spaces of surfaces with boundary","title":"The horofunction compactification of Teichmüller spaces of surfaces with boundary"}],"person":[{"role":"aut","roleDisplay":"VerfasserIn","display":"Alessandrini, Daniele","given":"Daniele","family":"Alessandrini"}],"note":["Gesehen am 09.02.2018"],"type":{"media":"Online-Ressource","bibl":"article-journal"},"recId":"1569357102","language":["eng"],"origin":[{"dateIssuedKey":"2016","dateIssuedDisp":"25 May 2016"}],"id":{"doi":["10.1016/j.topol.2016.05.011"],"eki":["1569357102"]},"name":{"displayForm":["D. Alessandrini, L. Liu, A. Papadopoulos, W. Su"]},"physDesc":[{"extent":"32 S."}],"relHost":[{"title":[{"title_sort":"Topology and its applications","subtitle":"a journal devoted to general, geometric, set-theoretic and algebraic topology","title":"Topology and its applications"}],"note":["Gesehen am 16.11.23"],"disp":"The horofunction compactification of Teichmüller spaces of surfaces with boundaryTopology and its applications","type":{"media":"Online-Ressource","bibl":"periodical"},"language":["eng"],"recId":"306652862","pubHistory":["11.1980 - 160.2013; Vol. 161.2014 -"],"part":{"volume":"208","text":"208(2016), Seite 160-191","extent":"32","year":"2016","pages":"160-191"},"origin":[{"publisher":"Elsevier","dateIssuedKey":"1980","dateIssuedDisp":"1980-","publisherPlace":"Amsterdam [u.a.]"}],"id":{"eki":["306652862"],"zdb":["1499758-7"]},"physDesc":[{"extent":"Online-Ressource"}]}]} 
SRT |a ALESSANDRIHOROFUNCTI2520