The horofunction compactification of Teichmüller spaces of surfaces with boundary
The arc metric is an asymmetric metric on the Teichmüller space T(S) of a surface S with nonempty boundary. It is the analogue of Thurston's metric on the Teichmüller space of a surface without boundary. In this paper we study the relation between Thurston's compactification and the horo...
Saved in:
| Main Author: | |
|---|---|
| Format: | Article (Journal) |
| Language: | English |
| Published: |
25 May 2016
|
| In: |
Topology and its applications
Year: 2016, Volume: 208, Pages: 160-191 |
| DOI: | 10.1016/j.topol.2016.05.011 |
| Online Access: | Verlag, Volltext: http://dx.doi.org/10.1016/j.topol.2016.05.011 Verlag, Volltext: http://www.sciencedirect.com/science/article/pii/S016686411630092X |
| Author Notes: | D. Alessandrini, L. Liu, A. Papadopoulos, W. Su |
MARC
| LEADER | 00000caa a2200000 c 4500 | ||
|---|---|---|---|
| 001 | 1569357102 | ||
| 003 | DE-627 | ||
| 005 | 20220814071018.0 | ||
| 007 | cr uuu---uuuuu | ||
| 008 | 180209s2016 xx |||||o 00| ||eng c | ||
| 024 | 7 | |a 10.1016/j.topol.2016.05.011 |2 doi | |
| 035 | |a (DE-627)1569357102 | ||
| 035 | |a (DE-576)499357108 | ||
| 035 | |a (DE-599)BSZ499357108 | ||
| 035 | |a (OCoLC)1340986453 | ||
| 040 | |a DE-627 |b ger |c DE-627 |e rda | ||
| 041 | |a eng | ||
| 084 | |a 27 |2 sdnb | ||
| 100 | 1 | |a Alessandrini, Daniele |e VerfasserIn |0 (DE-588)1073901270 |0 (DE-627)829779280 |0 (DE-576)435393227 |4 aut | |
| 245 | 1 | 4 | |a The horofunction compactification of Teichmüller spaces of surfaces with boundary |c D. Alessandrini, L. Liu, A. Papadopoulos, W. Su |
| 264 | 1 | |c 25 May 2016 | |
| 300 | |a 32 | ||
| 336 | |a Text |b txt |2 rdacontent | ||
| 337 | |a Computermedien |b c |2 rdamedia | ||
| 338 | |a Online-Ressource |b cr |2 rdacarrier | ||
| 500 | |a Gesehen am 09.02.2018 | ||
| 520 | |a The arc metric is an asymmetric metric on the Teichmüller space T(S) of a surface S with nonempty boundary. It is the analogue of Thurston's metric on the Teichmüller space of a surface without boundary. In this paper we study the relation between Thurston's compactification and the horofunction compactification of T(S) endowed with the arc metric. We prove that there is a natural homeomorphism between the two compactifications. This generalizes a result of Walsh [20] that concerns Thurston's metric. | ||
| 650 | 4 | |a Arc metric | |
| 650 | 4 | |a Horofunction | |
| 650 | 4 | |a Thurston's asymmetric metric | |
| 650 | 4 | |a Thurston's compactification | |
| 773 | 0 | 8 | |i Enthalten in |t Topology and its applications |d Amsterdam [u.a.] : Elsevier, 1980 |g 208(2016), Seite 160-191 |h Online-Ressource |w (DE-627)306652862 |w (DE-600)1499758-7 |w (DE-576)081954425 |7 nnas |a The horofunction compactification of Teichmüller spaces of surfaces with boundary |
| 773 | 1 | 8 | |g volume:208 |g year:2016 |g pages:160-191 |g extent:32 |a The horofunction compactification of Teichmüller spaces of surfaces with boundary |
| 856 | 4 | 0 | |u http://dx.doi.org/10.1016/j.topol.2016.05.011 |x Verlag |x Resolving-System |3 Volltext |
| 856 | 4 | 0 | |u http://www.sciencedirect.com/science/article/pii/S016686411630092X |x Verlag |3 Volltext |
| 951 | |a AR | ||
| 992 | |a 20180209 | ||
| 993 | |a Article | ||
| 994 | |a 2016 | ||
| 998 | |g 1073901270 |a Alessandrini, Daniele |m 1073901270:Alessandrini, Daniele |d 110000 |d 110100 |d 110000 |d 110400 |e 110000PA1073901270 |e 110100PA1073901270 |e 110000PA1073901270 |e 110400PA1073901270 |k 0/110000/ |k 1/110000/110100/ |k 0/110000/ |k 1/110000/110400/ |p 1 |x j | ||
| 999 | |a KXP-PPN1569357102 |e 2997848784 | ||
| BIB | |a Y | ||
| SER | |a journal | ||
| JSO | |a {"title":[{"title_sort":"horofunction compactification of Teichmüller spaces of surfaces with boundary","title":"The horofunction compactification of Teichmüller spaces of surfaces with boundary"}],"person":[{"role":"aut","roleDisplay":"VerfasserIn","display":"Alessandrini, Daniele","given":"Daniele","family":"Alessandrini"}],"note":["Gesehen am 09.02.2018"],"type":{"media":"Online-Ressource","bibl":"article-journal"},"recId":"1569357102","language":["eng"],"origin":[{"dateIssuedKey":"2016","dateIssuedDisp":"25 May 2016"}],"id":{"doi":["10.1016/j.topol.2016.05.011"],"eki":["1569357102"]},"name":{"displayForm":["D. Alessandrini, L. Liu, A. Papadopoulos, W. Su"]},"physDesc":[{"extent":"32 S."}],"relHost":[{"title":[{"title_sort":"Topology and its applications","subtitle":"a journal devoted to general, geometric, set-theoretic and algebraic topology","title":"Topology and its applications"}],"note":["Gesehen am 16.11.23"],"disp":"The horofunction compactification of Teichmüller spaces of surfaces with boundaryTopology and its applications","type":{"media":"Online-Ressource","bibl":"periodical"},"language":["eng"],"recId":"306652862","pubHistory":["11.1980 - 160.2013; Vol. 161.2014 -"],"part":{"volume":"208","text":"208(2016), Seite 160-191","extent":"32","year":"2016","pages":"160-191"},"origin":[{"publisher":"Elsevier","dateIssuedKey":"1980","dateIssuedDisp":"1980-","publisherPlace":"Amsterdam [u.a.]"}],"id":{"eki":["306652862"],"zdb":["1499758-7"]},"physDesc":[{"extent":"Online-Ressource"}]}]} | ||
| SRT | |a ALESSANDRIHOROFUNCTI2520 | ||