On the inclusion of the quasiconformal Teichmüller space into the length-spectrum Teichmüller space

This paper is about surfaces of infinite topological type. Unlike the case of surfaces of finite type, there are several deformation spaces associated with a surface S of infinite topological type. Such spaces depend on the choice of a basepoint (that is, the choice of a fixed conformal structure or...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
1. Verfasser: Alessandrini, Daniele (VerfasserIn)
Dokumenttyp: Article (Journal)
Sprache:Englisch
Veröffentlicht: February 2016
In: Monatshefte für Mathematik
Year: 2016, Jahrgang: 179, Heft: 2, Pages: 165-189
ISSN:1436-5081
DOI:10.1007/s00605-015-0813-9
Online-Zugang:Verlag, Volltext: http://dx.doi.org/10.1007/s00605-015-0813-9
Verlag, Volltext: https://link.springer.com/article/10.1007/s00605-015-0813-9
Volltext
Verfasserangaben:D. Alessandrini, L. Liu, A. Papadopoulos, W. Su

MARC

LEADER 00000caa a2200000 c 4500
001 1569364435
003 DE-627
005 20220814071024.0
007 cr uuu---uuuuu
008 180209s2016 xx |||||o 00| ||eng c
024 7 |a 10.1007/s00605-015-0813-9  |2 doi 
035 |a (DE-627)1569364435 
035 |a (DE-576)499364430 
035 |a (DE-599)BSZ499364430 
035 |a (OCoLC)1340986762 
040 |a DE-627  |b ger  |c DE-627  |e rda 
041 |a eng 
084 |a 27  |2 sdnb 
100 1 |a Alessandrini, Daniele  |e VerfasserIn  |0 (DE-588)1073901270  |0 (DE-627)829779280  |0 (DE-576)435393227  |4 aut 
245 1 0 |a On the inclusion of the quasiconformal Teichmüller space into the length-spectrum Teichmüller space  |c D. Alessandrini, L. Liu, A. Papadopoulos, W. Su 
264 1 |c February 2016 
300 |a 25 
336 |a Text  |b txt  |2 rdacontent 
337 |a Computermedien  |b c  |2 rdamedia 
338 |a Online-Ressource  |b cr  |2 rdacarrier 
500 |a Published online: 29 August 2015 
500 |a Gesehen am 09.02.2018 
520 |a This paper is about surfaces of infinite topological type. Unlike the case of surfaces of finite type, there are several deformation spaces associated with a surface S of infinite topological type. Such spaces depend on the choice of a basepoint (that is, the choice of a fixed conformal structure or hyperbolic structure on S) and they also depend on the choice of a distance on the set of equivalence classes of marked hyperbolic structures. We address the question of the comparison between two deformation spaces, namely, the quasiconformal Teichmüller space and the length-spectrum Teichmüller space. There is a natural inclusion map of the quasiconformal space into the length-spectrum space, which is not always surjective. We work under the hypothesis that the basepoint (a hyperbolic surface) satisfies a condition we call “upper-boundedness”. This means that this surface admits a pants decomposition defined by curves whose lengths are bounded above. 
773 0 8 |i Enthalten in  |t Monatshefte für Mathematik  |d Wien [u.a.] : Springer, 1890  |g 179(2016), 2, Seite 165-189  |h Online-Ressource  |w (DE-627)254638058  |w (DE-600)1462913-6  |w (DE-576)074531379  |x 1436-5081  |7 nnas  |a On the inclusion of the quasiconformal Teichmüller space into the length-spectrum Teichmüller space 
773 1 8 |g volume:179  |g year:2016  |g number:2  |g pages:165-189  |g extent:25  |a On the inclusion of the quasiconformal Teichmüller space into the length-spectrum Teichmüller space 
856 4 0 |u http://dx.doi.org/10.1007/s00605-015-0813-9  |x Verlag  |x Resolving-System  |3 Volltext 
856 4 0 |u https://link.springer.com/article/10.1007/s00605-015-0813-9  |x Verlag  |3 Volltext 
951 |a AR 
992 |a 20180209 
993 |a Article 
994 |a 2016 
998 |g 1073901270  |a Alessandrini, Daniele  |m 1073901270:Alessandrini, Daniele  |d 110000  |d 110100  |d 110000  |d 110400  |e 110000PA1073901270  |e 110100PA1073901270  |e 110000PA1073901270  |e 110400PA1073901270  |k 0/110000/  |k 1/110000/110100/  |k 0/110000/  |k 1/110000/110400/  |p 1  |x j 
999 |a KXP-PPN1569364435  |e 2997865735 
BIB |a Y 
SER |a journal 
JSO |a {"physDesc":[{"extent":"25 S."}],"relHost":[{"title":[{"title_sort":"Monatshefte für Mathematik","title":"Monatshefte für Mathematik"}],"type":{"bibl":"periodical","media":"Online-Ressource"},"disp":"On the inclusion of the quasiconformal Teichmüller space into the length-spectrum Teichmüller spaceMonatshefte für Mathematik","note":["Gesehen am 02.12.05"],"recId":"254638058","language":["eng"],"pubHistory":["1.1890 -"],"part":{"text":"179(2016), 2, Seite 165-189","volume":"179","extent":"25","year":"2016","issue":"2","pages":"165-189"},"titleAlt":[{"title":"Monatshefte für Mathematik und Physik"}],"origin":[{"dateIssuedDisp":"1890-","publisher":"Springer","dateIssuedKey":"1890","publisherPlace":"Wien [u.a.]"}],"id":{"zdb":["1462913-6"],"eki":["254638058"],"issn":["1436-5081"]},"physDesc":[{"extent":"Online-Ressource"}]}],"origin":[{"dateIssuedKey":"2016","dateIssuedDisp":"February 2016"}],"id":{"eki":["1569364435"],"doi":["10.1007/s00605-015-0813-9"]},"name":{"displayForm":["D. Alessandrini, L. Liu, A. Papadopoulos, W. Su"]},"note":["Published online: 29 August 2015","Gesehen am 09.02.2018"],"type":{"media":"Online-Ressource","bibl":"article-journal"},"language":["eng"],"recId":"1569364435","title":[{"title_sort":"On the inclusion of the quasiconformal Teichmüller space into the length-spectrum Teichmüller space","title":"On the inclusion of the quasiconformal Teichmüller space into the length-spectrum Teichmüller space"}],"person":[{"given":"Daniele","family":"Alessandrini","role":"aut","roleDisplay":"VerfasserIn","display":"Alessandrini, Daniele"}]} 
SRT |a ALESSANDRIONTHEINCLU2016