On the inclusion of the quasiconformal Teichmüller space into the length-spectrum Teichmüller space
This paper is about surfaces of infinite topological type. Unlike the case of surfaces of finite type, there are several deformation spaces associated with a surface S of infinite topological type. Such spaces depend on the choice of a basepoint (that is, the choice of a fixed conformal structure or...
Gespeichert in:
| 1. Verfasser: | |
|---|---|
| Dokumenttyp: | Article (Journal) |
| Sprache: | Englisch |
| Veröffentlicht: |
February 2016
|
| In: |
Monatshefte für Mathematik
Year: 2016, Jahrgang: 179, Heft: 2, Pages: 165-189 |
| ISSN: | 1436-5081 |
| DOI: | 10.1007/s00605-015-0813-9 |
| Online-Zugang: | Verlag, Volltext: http://dx.doi.org/10.1007/s00605-015-0813-9 Verlag, Volltext: https://link.springer.com/article/10.1007/s00605-015-0813-9 |
| Verfasserangaben: | D. Alessandrini, L. Liu, A. Papadopoulos, W. Su |
MARC
| LEADER | 00000caa a2200000 c 4500 | ||
|---|---|---|---|
| 001 | 1569364435 | ||
| 003 | DE-627 | ||
| 005 | 20220814071024.0 | ||
| 007 | cr uuu---uuuuu | ||
| 008 | 180209s2016 xx |||||o 00| ||eng c | ||
| 024 | 7 | |a 10.1007/s00605-015-0813-9 |2 doi | |
| 035 | |a (DE-627)1569364435 | ||
| 035 | |a (DE-576)499364430 | ||
| 035 | |a (DE-599)BSZ499364430 | ||
| 035 | |a (OCoLC)1340986762 | ||
| 040 | |a DE-627 |b ger |c DE-627 |e rda | ||
| 041 | |a eng | ||
| 084 | |a 27 |2 sdnb | ||
| 100 | 1 | |a Alessandrini, Daniele |e VerfasserIn |0 (DE-588)1073901270 |0 (DE-627)829779280 |0 (DE-576)435393227 |4 aut | |
| 245 | 1 | 0 | |a On the inclusion of the quasiconformal Teichmüller space into the length-spectrum Teichmüller space |c D. Alessandrini, L. Liu, A. Papadopoulos, W. Su |
| 264 | 1 | |c February 2016 | |
| 300 | |a 25 | ||
| 336 | |a Text |b txt |2 rdacontent | ||
| 337 | |a Computermedien |b c |2 rdamedia | ||
| 338 | |a Online-Ressource |b cr |2 rdacarrier | ||
| 500 | |a Published online: 29 August 2015 | ||
| 500 | |a Gesehen am 09.02.2018 | ||
| 520 | |a This paper is about surfaces of infinite topological type. Unlike the case of surfaces of finite type, there are several deformation spaces associated with a surface S of infinite topological type. Such spaces depend on the choice of a basepoint (that is, the choice of a fixed conformal structure or hyperbolic structure on S) and they also depend on the choice of a distance on the set of equivalence classes of marked hyperbolic structures. We address the question of the comparison between two deformation spaces, namely, the quasiconformal Teichmüller space and the length-spectrum Teichmüller space. There is a natural inclusion map of the quasiconformal space into the length-spectrum space, which is not always surjective. We work under the hypothesis that the basepoint (a hyperbolic surface) satisfies a condition we call “upper-boundedness”. This means that this surface admits a pants decomposition defined by curves whose lengths are bounded above. | ||
| 773 | 0 | 8 | |i Enthalten in |t Monatshefte für Mathematik |d Wien [u.a.] : Springer, 1890 |g 179(2016), 2, Seite 165-189 |h Online-Ressource |w (DE-627)254638058 |w (DE-600)1462913-6 |w (DE-576)074531379 |x 1436-5081 |7 nnas |a On the inclusion of the quasiconformal Teichmüller space into the length-spectrum Teichmüller space |
| 773 | 1 | 8 | |g volume:179 |g year:2016 |g number:2 |g pages:165-189 |g extent:25 |a On the inclusion of the quasiconformal Teichmüller space into the length-spectrum Teichmüller space |
| 856 | 4 | 0 | |u http://dx.doi.org/10.1007/s00605-015-0813-9 |x Verlag |x Resolving-System |3 Volltext |
| 856 | 4 | 0 | |u https://link.springer.com/article/10.1007/s00605-015-0813-9 |x Verlag |3 Volltext |
| 951 | |a AR | ||
| 992 | |a 20180209 | ||
| 993 | |a Article | ||
| 994 | |a 2016 | ||
| 998 | |g 1073901270 |a Alessandrini, Daniele |m 1073901270:Alessandrini, Daniele |d 110000 |d 110100 |d 110000 |d 110400 |e 110000PA1073901270 |e 110100PA1073901270 |e 110000PA1073901270 |e 110400PA1073901270 |k 0/110000/ |k 1/110000/110100/ |k 0/110000/ |k 1/110000/110400/ |p 1 |x j | ||
| 999 | |a KXP-PPN1569364435 |e 2997865735 | ||
| BIB | |a Y | ||
| SER | |a journal | ||
| JSO | |a {"physDesc":[{"extent":"25 S."}],"relHost":[{"title":[{"title_sort":"Monatshefte für Mathematik","title":"Monatshefte für Mathematik"}],"type":{"bibl":"periodical","media":"Online-Ressource"},"disp":"On the inclusion of the quasiconformal Teichmüller space into the length-spectrum Teichmüller spaceMonatshefte für Mathematik","note":["Gesehen am 02.12.05"],"recId":"254638058","language":["eng"],"pubHistory":["1.1890 -"],"part":{"text":"179(2016), 2, Seite 165-189","volume":"179","extent":"25","year":"2016","issue":"2","pages":"165-189"},"titleAlt":[{"title":"Monatshefte für Mathematik und Physik"}],"origin":[{"dateIssuedDisp":"1890-","publisher":"Springer","dateIssuedKey":"1890","publisherPlace":"Wien [u.a.]"}],"id":{"zdb":["1462913-6"],"eki":["254638058"],"issn":["1436-5081"]},"physDesc":[{"extent":"Online-Ressource"}]}],"origin":[{"dateIssuedKey":"2016","dateIssuedDisp":"February 2016"}],"id":{"eki":["1569364435"],"doi":["10.1007/s00605-015-0813-9"]},"name":{"displayForm":["D. Alessandrini, L. Liu, A. Papadopoulos, W. Su"]},"note":["Published online: 29 August 2015","Gesehen am 09.02.2018"],"type":{"media":"Online-Ressource","bibl":"article-journal"},"language":["eng"],"recId":"1569364435","title":[{"title_sort":"On the inclusion of the quasiconformal Teichmüller space into the length-spectrum Teichmüller space","title":"On the inclusion of the quasiconformal Teichmüller space into the length-spectrum Teichmüller space"}],"person":[{"given":"Daniele","family":"Alessandrini","role":"aut","roleDisplay":"VerfasserIn","display":"Alessandrini, Daniele"}]} | ||
| SRT | |a ALESSANDRIONTHEINCLU2016 | ||