Exponential networks and representations of quivers

We study the geometric description of BPS states in supersymmetric theories with eight supercharges in terms of geodesic networks on suitable spectral curves. We lift and extend several constructions of Gaiotto-Moore-Neitzke from gauge theory to local Calabi-Yau threefolds and related models. The di...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Eager, Richard (VerfasserIn) , Selmani, Sam Alexandre (VerfasserIn) , Walcher, Johannes (VerfasserIn)
Dokumenttyp: Article (Journal)
Sprache:Englisch
Veröffentlicht: August 17, 2017
In: Journal of high energy physics
Year: 2017, Heft: 8
ISSN:1029-8479
DOI:10.1007/JHEP08(2017)063
Online-Zugang:Verlag, kostenfrei, Volltext: http://dx.doi.org/10.1007/JHEP08(2017)063
Verlag, kostenfrei, Volltext: https://link.springer.com/article/10.1007/JHEP08(2017)063
Volltext
Verfasserangaben:Richard Eager, Sam Alexandre Selmani and Johannes Walcher
Beschreibung
Zusammenfassung:We study the geometric description of BPS states in supersymmetric theories with eight supercharges in terms of geodesic networks on suitable spectral curves. We lift and extend several constructions of Gaiotto-Moore-Neitzke from gauge theory to local Calabi-Yau threefolds and related models. The differential is multi-valued on the covering curve and features a new type of logarithmic singularity in order to account for D0-branes and non-compact D4-branes, respectively. We describe local rules for the three-way junctions of BPS trajectories relative to a particular framing of the curve. We reproduce BPS quivers of local geometries and illustrate the wall-crossing of finite-mass bound states in several new examples. We describe first steps toward understanding the spectrum of framed BPS states in terms of such “exponential networks”.
Beschreibung:Gesehen am 25.02.2020
Beschreibung:Online Resource
ISSN:1029-8479
DOI:10.1007/JHEP08(2017)063