On the unipotence of autoequivalences of toric complete intersection Calabi-Yau categories

Consider the derived category of coherent sheaves, D b (X), on a compact Calabi-Yau complete intersection X in a toric variety. The scope of this work is to establish the (quasi-)unipotence of a class of elements in the group of autoequivalences, Aut(D b (X)). This is achieved by associating singula...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Herbst, Manfred (VerfasserIn) , Walcher, Johannes (VerfasserIn)
Dokumenttyp: Article (Journal)
Sprache:Englisch
Veröffentlicht: 30 July 2011
In: Mathematische Annalen
Year: 2012, Jahrgang: 353, Heft: 3, Pages: 783-802
ISSN:1432-1807
DOI:10.1007/s00208-011-0704-x
Online-Zugang:Verlag, Volltext: http://dx.doi.org/10.1007/s00208-011-0704-x
Verlag, Volltext: https://link.springer.com/article/10.1007/s00208-011-0704-x
Volltext
Verfasserangaben:Manfred Herbst, Johannes Walcher
Beschreibung
Zusammenfassung:Consider the derived category of coherent sheaves, D b (X), on a compact Calabi-Yau complete intersection X in a toric variety. The scope of this work is to establish the (quasi-)unipotence of a class of elements in the group of autoequivalences, Aut(D b (X)). This is achieved by associating singularity categories, modelled by matrix factorizations, to the toric data. Each of these triangulated categories is equivalent to the derived category of coherent sheaves on X. The idea is then that, although the singularity categories share the group of autoequivalences, on each category there are elements in Aut(D b (X)), whose (quasi-)unipotence relations are easier to see than on the other categories.
Beschreibung:Gesehen am 13.02.2018
Beschreibung:Online Resource
ISSN:1432-1807
DOI:10.1007/s00208-011-0704-x