On the arithmetic of D-brane superpotentials: lines and conics on the mirror quintic

Irrational invariants from D-brane superpotentials are pursued on the mirror quintic, systematically according to the degree of a representative curve. Lines are completely understood: the contribution from isolated lines vanishes. All other lines can be deformed holomorphically to the van Geemen li...

Full description

Saved in:
Bibliographic Details
Main Author: Walcher, Johannes (Author)
Format: Article (Journal) Chapter/Article
Language:English
Published: 2012
In: Arxiv

Online Access:Verlag, kostenfrei, Volltext: http://arxiv.org/abs/1201.6427
Get full text
Author Notes:Johannes Walcher

MARC

LEADER 00000caa a2200000 c 4500
001 1569774536
003 DE-627
005 20220814071653.0
007 cr uuu---uuuuu
008 180213s2012 xx |||||o 00| ||eng c
035 |a (DE-627)1569774536 
035 |a (DE-576)499774531 
035 |a (DE-599)BSZ499774531 
035 |a (OCoLC)1340987282 
040 |a DE-627  |b ger  |c DE-627  |e rda 
041 |a eng 
084 |a 27  |2 sdnb 
100 1 |a Walcher, Johannes  |d 1973-  |e VerfasserIn  |0 (DE-588)1089078978  |0 (DE-627)85098114X  |0 (DE-576)459955098  |4 aut 
245 1 0 |a On the arithmetic of D-brane superpotentials  |b lines and conics on the mirror quintic  |c Johannes Walcher 
264 1 |c 2012 
300 |a 54 
336 |a Text  |b txt  |2 rdacontent 
337 |a Computermedien  |b c  |2 rdamedia 
338 |a Online-Ressource  |b cr  |2 rdacarrier 
500 |a Gesehen am 25.02.2020 
520 |a Irrational invariants from D-brane superpotentials are pursued on the mirror quintic, systematically according to the degree of a representative curve. Lines are completely understood: the contribution from isolated lines vanishes. All other lines can be deformed holomorphically to the van Geemen lines, whose superpotential is determined via the associated inhomogeneous Picard-Fuchs equation. Substantial progress is made for conics: the families found by Mustata contain conics reducible to isolated lines, hence they have a vanishing superpotential. The search for all conics invariant under a residual Z2 symmetry reduces to an algebraic problem at the limit of our computational capabilities. The main results are of arithmetic flavor: the extension of the moduli space by the algebraic cycle splits in the large complex structure limit into groups each governed by an algebraic number field. The expansion coefficients of the superpotential around large volume remain irrational. The integrality of those coefficients is revealed by a new, arithmetic twist of the di-logarithm: the D-logarithm. There are several options for attempting to explain how these invariants could arise from the A-model perspective. A successful spacetime interpretation will require spaces of BPS states to carry number theoretic structures, such as an action of the Galois group. 
650 4 |a High Energy Physics - Theory 
650 4 |a Mathematics - Algebraic Geometry 
773 0 8 |i Enthalten in  |t Arxiv  |d Ithaca, NY : Cornell University, 1991  |g (2012) Artikel-Nummer 1201.6427, 54 Seiten  |h Online-Ressource  |w (DE-627)509006531  |w (DE-600)2225896-6  |w (DE-576)28130436X  |7 nnas  |a On the arithmetic of D-brane superpotentials lines and conics on the mirror quintic 
773 1 8 |g year:2012  |g extent:54  |a On the arithmetic of D-brane superpotentials lines and conics on the mirror quintic 
856 4 0 |u http://arxiv.org/abs/1201.6427  |x Verlag  |z kostenfrei  |3 Volltext 
951 |a AR 
992 |a 20180213 
993 |a Article 
998 |g 1089078978  |a Walcher, Johannes  |m 1089078978:Walcher, Johannes  |p 1  |x j  |y j 
999 |a KXP-PPN1569774536  |e 2998890938 
BIB |a Y 
JSO |a {"origin":[{"dateIssuedKey":"2012","dateIssuedDisp":"2012"}],"id":{"eki":["1569774536"]},"name":{"displayForm":["Johannes Walcher"]},"physDesc":[{"extent":"54 S."}],"relHost":[{"title":[{"title":"Arxiv","title_sort":"Arxiv"}],"recId":"509006531","language":["eng"],"disp":"On the arithmetic of D-brane superpotentials lines and conics on the mirror quinticArxiv","type":{"bibl":"edited-book","media":"Online-Ressource"},"note":["Gesehen am 28.05.2024"],"titleAlt":[{"title":"Arxiv.org"},{"title":"Arxiv.org e-print archive"},{"title":"Arxiv e-print archive"},{"title":"De.arxiv.org"}],"part":{"year":"2012","extent":"54","text":"(2012) Artikel-Nummer 1201.6427, 54 Seiten"},"pubHistory":["1991 -"],"id":{"eki":["509006531"],"zdb":["2225896-6"]},"origin":[{"publisherPlace":"Ithaca, NY ; [Erscheinungsort nicht ermittelbar]","publisher":"Cornell University ; Arxiv.org","dateIssuedKey":"1991","dateIssuedDisp":"1991-"}],"physDesc":[{"extent":"Online-Ressource"}]}],"title":[{"title_sort":"On the arithmetic of D-brane superpotentials","title":"On the arithmetic of D-brane superpotentials","subtitle":"lines and conics on the mirror quintic"}],"person":[{"role":"aut","roleDisplay":"VerfasserIn","display":"Walcher, Johannes","given":"Johannes","family":"Walcher"}],"note":["Gesehen am 25.02.2020"],"type":{"media":"Online-Ressource","bibl":"chapter"},"recId":"1569774536","language":["eng"]} 
SRT |a WALCHERJOHONTHEARITH2012