The real topological vertex at work

We develop the real vertex formalism for the computation of the topological string partition function with D-branes and O-planes at the fixed point locus of an anti-holomorphic involution acting non-trivially on the toric diagram of any local toric Calabi-Yau manifold. Our results cover in particula...

Full description

Saved in:
Bibliographic Details
Main Authors: Krefl, Daniel (Author) , Pasquetti, Sara (Author) , Walcher, Johannes (Author)
Format: Article (Journal)
Language:English
Published: 11 January 2010
In: Nuclear physics. B, Particle physics
Year: 2010, Volume: 833, Issue: 3, Pages: 153-198
ISSN:1873-1562
DOI:10.1016/j.nuclphysb.2010.01.002
Online Access:Verlag, kostenfrei, Volltext: http://dx.doi.org/10.1016/j.nuclphysb.2010.01.002
Verlag, kostenfrei, Volltext: http://www.sciencedirect.com/science/article/pii/S0550321310000179
Get full text
Author Notes:Daniel Krefl, Sara Pasquetti, Johannes Walcher

MARC

LEADER 00000caa a2200000 c 4500
001 1569779090
003 DE-627
005 20220814071826.0
007 cr uuu---uuuuu
008 180213s2010 xx |||||o 00| ||eng c
024 7 |a 10.1016/j.nuclphysb.2010.01.002  |2 doi 
035 |a (DE-627)1569779090 
035 |a (DE-576)499779096 
035 |a (DE-599)BSZ499779096 
035 |a (OCoLC)1340987302 
040 |a DE-627  |b ger  |c DE-627  |e rda 
041 |a eng 
084 |a 27  |2 sdnb 
100 1 |a Krefl, Daniel  |d 1980-  |e VerfasserIn  |0 (DE-588)138756317  |0 (DE-627)605702527  |0 (DE-576)308951158  |4 aut 
245 1 4 |a The real topological vertex at work  |c Daniel Krefl, Sara Pasquetti, Johannes Walcher 
264 1 |c 11 January 2010 
300 |a 46 
336 |a Text  |b txt  |2 rdacontent 
337 |a Computermedien  |b c  |2 rdamedia 
338 |a Online-Ressource  |b cr  |2 rdacarrier 
500 |a Gesehen am 25.02.2020 
520 |a We develop the real vertex formalism for the computation of the topological string partition function with D-branes and O-planes at the fixed point locus of an anti-holomorphic involution acting non-trivially on the toric diagram of any local toric Calabi-Yau manifold. Our results cover in particular the real vertex with non-trivial fixed leg. We give a careful derivation of the relevant ingredients using duality with Chern-Simons theory on orbifolds. We show that the real vertex can also be interpreted in terms of a statistical model of symmetric crystal melting. Using this latter connection, we also assess the constant map contribution in Calabi-Yau orientifold models. We find that there are no perturbative contributions beyond one-loop, but a non-trivial sum over non-perturbative sectors, which we compare with the non-perturbative contribution to the closed string expansion. 
650 4 |a Orientifold 
650 4 |a Topological string theory 
650 4 |a Topological vertex 
700 1 |a Pasquetti, Sara  |e VerfasserIn  |0 (DE-588)1152340379  |0 (DE-627)1013868234  |0 (DE-576)499827724  |4 aut 
700 1 |a Walcher, Johannes  |d 1973-  |e VerfasserIn  |0 (DE-588)1089078978  |0 (DE-627)85098114X  |0 (DE-576)459955098  |4 aut 
773 0 8 |i Enthalten in  |t Nuclear physics. B, Particle physics  |d Amsterdam : North-Holland Publ. Co., 1967  |g 833(2010), 3, Seite 153-198  |h Online-Ressource  |w (DE-627)266014984  |w (DE-600)1466567-0  |w (DE-576)074959816  |x 1873-1562  |7 nnas  |a The real topological vertex at work 
773 1 8 |g volume:833  |g year:2010  |g number:3  |g pages:153-198  |g extent:46  |a The real topological vertex at work 
856 4 0 |u http://dx.doi.org/10.1016/j.nuclphysb.2010.01.002  |x Verlag  |x Resolving-System  |z kostenfrei  |3 Volltext 
856 4 0 |u http://www.sciencedirect.com/science/article/pii/S0550321310000179  |x Verlag  |z kostenfrei  |3 Volltext 
951 |a AR 
992 |a 20180213 
993 |a Article 
994 |a 2010 
998 |g 1089078978  |a Walcher, Johannes  |m 1089078978:Walcher, Johannes  |p 3  |y j 
999 |a KXP-PPN1569779090  |e 2998924735 
BIB |a Y 
SER |a journal 
JSO |a {"title":[{"title_sort":"real topological vertex at work","title":"The real topological vertex at work"}],"person":[{"role":"aut","roleDisplay":"VerfasserIn","display":"Krefl, Daniel","given":"Daniel","family":"Krefl"},{"role":"aut","roleDisplay":"VerfasserIn","display":"Pasquetti, Sara","given":"Sara","family":"Pasquetti"},{"given":"Johannes","family":"Walcher","role":"aut","display":"Walcher, Johannes","roleDisplay":"VerfasserIn"}],"type":{"bibl":"article-journal","media":"Online-Ressource"},"note":["Gesehen am 25.02.2020"],"language":["eng"],"recId":"1569779090","origin":[{"dateIssuedKey":"2010","dateIssuedDisp":"11 January 2010"}],"id":{"doi":["10.1016/j.nuclphysb.2010.01.002"],"eki":["1569779090"]},"name":{"displayForm":["Daniel Krefl, Sara Pasquetti, Johannes Walcher"]},"physDesc":[{"extent":"46 S."}],"relHost":[{"title":[{"partname":"Particle physics","subtitle":"journal devoted to the experimental and theoretical study of the fundamental constituents of matter and their interactions","title":"Nuclear physics","title_sort":"Nuclear physics"}],"pubHistory":["1.1967 - 877.2013; Vol. 878.2014 -"],"part":{"pages":"153-198","issue":"3","year":"2010","extent":"46","text":"833(2010), 3, Seite 153-198","volume":"833"},"titleAlt":[{"title":"Nuclear physics <Amsterdam> / B"},{"title":"Particle physics"}],"type":{"media":"Online-Ressource","bibl":"periodical"},"disp":"The real topological vertex at workNuclear physics. B, Particle physics","note":["Gesehen am 24.05.23","Fortsetzung der Druck-Ausgabe"],"recId":"266014984","language":["eng"],"origin":[{"dateIssuedDisp":"1967-","dateIssuedKey":"1967","publisher":"North-Holland Publ. Co.","publisherPlace":"Amsterdam"}],"id":{"issn":["1873-1562"],"eki":["266014984"],"zdb":["1466567-0"]},"physDesc":[{"extent":"Online-Ressource"}]}]} 
SRT |a KREFLDANIEREALTOPOLO1120