The real topological vertex at work
We develop the real vertex formalism for the computation of the topological string partition function with D-branes and O-planes at the fixed point locus of an anti-holomorphic involution acting non-trivially on the toric diagram of any local toric Calabi-Yau manifold. Our results cover in particula...
Gespeichert in:
| Hauptverfasser: | , , |
|---|---|
| Dokumenttyp: | Article (Journal) |
| Sprache: | Englisch |
| Veröffentlicht: |
11 January 2010
|
| In: |
Nuclear physics. B, Particle physics
Year: 2010, Jahrgang: 833, Heft: 3, Pages: 153-198 |
| ISSN: | 1873-1562 |
| DOI: | 10.1016/j.nuclphysb.2010.01.002 |
| Online-Zugang: | Verlag, kostenfrei, Volltext: http://dx.doi.org/10.1016/j.nuclphysb.2010.01.002 Verlag, kostenfrei, Volltext: http://www.sciencedirect.com/science/article/pii/S0550321310000179 |
| Verfasserangaben: | Daniel Krefl, Sara Pasquetti, Johannes Walcher |
| Zusammenfassung: | We develop the real vertex formalism for the computation of the topological string partition function with D-branes and O-planes at the fixed point locus of an anti-holomorphic involution acting non-trivially on the toric diagram of any local toric Calabi-Yau manifold. Our results cover in particular the real vertex with non-trivial fixed leg. We give a careful derivation of the relevant ingredients using duality with Chern-Simons theory on orbifolds. We show that the real vertex can also be interpreted in terms of a statistical model of symmetric crystal melting. Using this latter connection, we also assess the constant map contribution in Calabi-Yau orientifold models. We find that there are no perturbative contributions beyond one-loop, but a non-trivial sum over non-perturbative sectors, which we compare with the non-perturbative contribution to the closed string expansion. |
|---|---|
| Beschreibung: | Gesehen am 25.02.2020 |
| Beschreibung: | Online Resource |
| ISSN: | 1873-1562 |
| DOI: | 10.1016/j.nuclphysb.2010.01.002 |